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Abstract

Motivation: Diverse disciplines in biology process and analyze multiple sequence alignments (MSAs) and phylogen-
etic trees to evaluate their information content, infer evolutionary events and processes and predict gene function.
However, automated processing of MSAs and trees remains a challenge due to the lack of a unified toolkit. To fill
this gap, we introduce PhyKIT, a toolkit for the UNIX shell environment with 30 functions that process MSAs and
trees, including but not limited to estimation of mutation rate, evaluation of sequence composition biases, calcula-
tion of the degree of violation of a molecular clock and collapsing bipartitions (internal branches) with low support.

Results: To demonstrate the utility of PhyKIT, we detail three use cases: (1) summarizing information content in
MSAs and phylogenetic trees for diagnosing potential biases in sequence or tree data; (2) evaluating gene–gene co-
variation of evolutionary rates to identify functional relationships, including novel ones, among genes and (3) iden-
tify lack of resolution events or polytomies in phylogenetic trees, which are suggestive of rapid radiation events or
lack of data. We anticipate PhyKIT will be useful for processing, examining and deriving biological meaning from in-
creasingly large phylogenomic datasets.

Availability and implementation: PhyKIT is freely available on GitHub (https://github.com/JLSteenwyk/PhyKIT), PyPi
(https://pypi.org/project/phykit/) and the Anaconda Cloud (https://anaconda.org/JLSteenwyk/phykit) under the MIT li-
cense with extensive documentation and user tutorials (https://jlsteenwyk.com/PhyKIT).

Contact: jacob.steenwyk@vanderbilt.edu or antonis.rokas@vanderbilt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multiple sequence alignments (MSAs) and phylogenetic trees are
widely used in numerous disciplines, including bioinformatics, evo-
lutionary biology, molecular biology and structural biology. As a re-
sult, the development of user-friendly software that enables
biologists to process and analyze MSAs and phylogenetic trees is an
active area of research (Kapli et al., 2020).

In recent years, numerous methods have proven useful for diag-
nosing potential biases and inferring biological events in genome-
scale phylogenetic (or phylogenomic) datasets. For example, meth-
ods that evaluate sequence composition biases in MSAs (Phillips and
Penny, 2003), signatures of clock-like evolution in phylogenetic
trees (Liu et al., 2017), phylogenetic treeness (Lanyon, 1988;
Phillips and Penny, 2003), taxa whose long branches may cause
variation in their placement on phylogenetic trees (Struck, 2014),

and others have assisted in summarizing the information content in
phylogenomic datasets and improved phylogenetic inference (Doyle
et al., 2015; Felsenstein, 1978; Liu et al., 2017; Philippe et al., 2011;
Salichos and Rokas, 2013; Smith et al., 2018; Walker et al., 2019).

Other methodological innovations include identifying significant
gene–gene covariation of evolutionary rates, which has been shown
to accurately and sensitively identify genes that have shared func-
tions, are coexpressed, and/or are part of the same multimeric com-
plexes (Clark et al., 2012; Sato et al., 2005). Furthermore, gene–
gene covariation serves as a powerful evolution-based genetic screen
for predicting gene function (Brunette et al., 2019). Lastly, a recently
developed method has enabled the identification of unresolved in-
ternal branches or polytomies in species trees (One Thousand Plant
Transcriptomes Initiative, 2019; Sayyari and Mirarab, 2018); such
branches can stem from rapid radiation events or from lack of data
(Rokas and Carroll, 2006).
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Despite the wealth of information in MSAs and phylogenetic
trees, there is a dearth of tools that enable researchers to conduct
these analyses in a unified framework. For example, to utilize the
functions mentioned in the previous paragraphs, a combination of
web-server applications, ‘hard-coded’ scripts available through nu-
merous repositories and supplementary material, standalone
software and/or extensive programming in languages including R,
Python or C is currently required (Brown et al., 2017; Cock et al.,
2009; Hernández et al., 2018; Huerta-Cepas et al., 2016; Junier and
Zdobnov, 2010; Kück and Longo, 2014; One Thousand Plant
Transcriptomes Initiative, 2019; Revell, 2012; Struck, 2014;
Talevich et al., 2012; Wolfe and Clark, 2015). As a result, integrat-
ing these functions into bioinformatic pipelines can be challenging,
reducing their accessibility to the scientific community.

To facilitate the integration of these methods into bioinformatic
pipelines, we introduce PhyKIT, a UNIX shell toolkit with 30 func-
tions (Supplementary Table S1) that have broad utility for analyzing
and processing MSAs and phylogenetic trees. Exemplary functions
implemented in PhyKIT include measuring topological similarity of
phylogenetic trees, creating codon-based MSAs, concatenating sets
of MSAs into phylogenomic datasets, editing and/or viewing align-
ments and phylogenetic trees and identifying putatively spurious
homologs in MSAs. We highlight three uses of PhyKIT: (1) calculat-
ing diverse statistics that summarize the information content and po-
tential biases (e.g. sequence- or phylogeny-based biases) in MSAs
and phylogenetic trees; (2) creating a gene–gene covariation network
and (3) inferring the presence of polytomies from phylogenomic
data. The diverse functions implemented in PhyKIT will likely be of
interest to bioinformaticians, molecular biologists, evolutionary
biologists and others.

2 Materials and methods

PhyKIT is a command line tool for the UNIX shell environment
written in the Python programming language (https://www.python.
org/). PhyKIT requires few dependencies [Biopython (Cock et al.,
2009) and SciPy (Virtanen et al., 2020)] making it user-friendly to
install and integrate into existing bioinformatic pipelines. Online
documentation of PhyKIT comes complete with tutorials that detail
use cases for various functions. Lastly, PhyKIT is modularly
designed to allow straightforward integration of additional func-
tions in future versions.

PhyKIT has 30 different functions that help process and analyze
MSAs and phylogenetic trees (Supplementary Table S1). The 30
functions can be grouped into broad categories that assist in con-
ducting analyses of MSAs and phylogenies or in processing/editing
them. For example, ‘analysis’ functions help examine information
content biases, gene–gene covariation and polytomies in phyloge-
nomic datasets; ‘processing/editing’ functions help prune tips from
phylogenies, collapse poorly supported bipartitions in phylogenetic
trees, concatenate sets of MSAs into a single data matrix or create
codon-based alignments from protein alignments and their corre-
sponding nucleotide sequences.

Detailed information about each one of PhyKIT’s functions and
tutorials for using the software can be found in the online documen-
tation (https://jlsteenwyk.com/PhyKIT). Here, we focus on three
specific groups of functions implemented in PhyKIT that enable
researchers to summarize information content in phylogenomic
datasets, create gene–gene evolutionary rate covariation networks
and identifying polytomies in phylogenomic data.

2.1 Evaluating information content and biases in

phylogenomic datasets
MSAs and phylogenetic trees are frequently examined to evaluate
their information content and potential biases in characteristics such
as sequence composition or branch lengths (Doyle et al., 2015; Liu
et al., 2017; Phillips and Penny, 2003; Philippe et al., 2011;
Shenet al., 2016a; Smith et al., 2018; Struck, 2014). PhyKIT imple-
ments numerous functions for doing so. We demonstrate the appli-
cation of 14 functions:

(1)Alignment length. The length of anMSA, which is associated
with robust bipartition support and tree accuracy (Shenet al.,
2016a; Walker et al., 2019).

(2)Alignment length with no gaps. The length of anMSA after
excluding sites with gaps, which is associated with robust bipartition
support and tree accuracy (Shenet al., 2016a).

(3)Degree of violation of a molecular clock (DVMC). A metric
used to determine the clock-like evolution of a gene using the stand-
ard deviation of branch lengths for a single gene tree (Liu et al.,
2017). DVMC is calculated using the following formula:

DVMC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
j¼1

ij ��ið Þ2
vuut ;

where N represents the number of tips in a phylogenetic tree, ijbeing
the distance between the root of the tree and species j, and �i repre-
sents the average root to tip distance. DVMC can be used to identify
genes with clock-like evolution for divergence time estimation (Liu
et al., 2017).

(4)Internal branch lengths. Summary statistics of internal branch
lengths in a phylogenetic tree are reported including mean, median,
25thpercentile, 75th percentile, minimum, maximum, standard
deviation and variance values. Examination of internal branch
lengths is useful in evaluating phylogenetic tree shape.

(5)Long branch score. A metric that examines the degree of
taxon-specific long branch attraction (Struck, 2014; Weigert et al.,
2014). Long branch scores of individual taxa are calculated using
the following formula:

LBi ¼
�PDi

�PDall
� 1

� �
� 100;

where �PDi represents the average pairwise patristic distance of
taxon i to all other taxa, �PDall represents the average patristic dis-
tance across all taxa and LBi represents the long branch score of
taxon i. Long branch scores can be used to evaluate heterogeneity in
tip-to-root distances and identify taxa that may be susceptible to
long branch attraction.

(6)Pairwise identity. Pairwise identity is a crude approximation
of the evolutionary rate of a gene and is calculated by determining
the average number of sites in an MSA that are the same character
state between all pairwise combinations of taxa. This can be used to
group genes based on their evolutionary rates (e.g. faster-evolving
genes versus slower-evolving ones) (Chen et al., 2017).

(7)Patristic distances. Patristic distances refer to all distances be-
tween all pairwise combinations of tips in a phylogenetic tree
(Fourment and Gibbs, 2006), which can be used to evaluate the rate
of evolution in gene trees or taxon sampling density in species trees.

(8)Parsimony-informative sites. Parsimony-informative sites are
those sites in an MSA that have a least two character states (exclud-
ing gaps) that occur at least twice (Kumar et al., 2016); the number
of parsimony-informative sites is associated with robust bipartition
support and tree accuracy (Shenet al., 2016a; Steenwyk et al.,
2020).

(9)Variable sites. Variable sites are those sites in an MSA that
contain at least two different character states (excluding gaps)
(Kumar et al., 2016); the number of variable sites is associated with
robust bipartition support and tree accuracy (Shenet al., 2016a).

(10)Relative composition variability. Relative composition vari-
ability is the average variability in the sequence composition among
taxa in an MSA. Relative composition variability is calculated using
the following formula:

Relative composition variability ¼
Xc

i¼1

Xn

j¼1

cij ��cij j
s� n

;

where c is the number of different character states per sequence
type, n is the number of taxa in an MSA, cijis the number of occur-
rences of the ith character state for the jth taxon, �ci is the average
number of the ith c character state across n taxa and s refers to the
total number of sites (characters) in an MSA. Relative composition
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variability can be used to evaluate potential sequence composition
biases in MSAs, which in turn violate assumptions of site compos-
ition homogeneity in standard models of sequence evolution
(Phillips and Penny, 2003).

(11)Saturation. Saturation refers to when an MSA contains
many sites that have experienced multiple substitutions in individual
taxa. Saturation is estimated from the slope of the regression line be-
tween patristic distances and pairwise identities. Saturated MSAs
have reduced phylogenetic information and can result in issues of
long branch attraction (Lake, 1991; Philippe et al., 2011).

(12)Total tree length. Total tree length refers to the sum of in-
ternal and terminal branch lengths and is calculated using the fol-
lowing formula:

total tree length ¼
Xa

i¼1
li þ

Xb

j¼1
lj;

where liis the branch length of the ith branch of a internal branches
and lj is the branch length of the jth branch of b terminal branches.
Total tree length measures the inferred total amount or rate of evo-
lutionary change in a phylogenetic tree.

(13)Treeness. Treeness (also referred to as stemminess) is a meas-
ure of the inferred relative amount or rate of evolutionary change
that has taken place on internal branches of a phylogenetic tree
(Lanyon, 1988; Phillips and Penny, 2003) and is calculated using the
following formula:

treeness ¼
Xb

u¼1

lu
lt

where lu is the branch length of the uth branch of b internal branches
and lt refers to the total branch length of the phylogenetic tree.
Treeness can be used to evaluate how much of the total tree length is
observed among internal branches.

(14)Treeness divided by relative composition variability. This
function combines two metrics to measure both composition bias
and other biases that may negatively influence phylogenetic infer-
ence. High treeness divided by relative composition variability val-
ues have been shown to be less susceptible to sequence composition
biases and are associated with robust bipartition support and tree
accuracy (Phillips and Penny, 2003; Shenet al., 2016a).

2.2 Calculating gene–gene evolutionary rate covariation

or coevolution
Genes that share similar rates of evolution through speciation events
(or coevolve) tend to have similar functions, expression levels, or are
parts of the same multimeric complexes (Clark et al., 2012; Sato
et al., 2005). Thus, identifying significant coevolution between genes
(i.e. identifying genes that are significantly correlated in their evolu-
tionary rates across speciation events) can be a powerful evolution-
based screen to determine gene function (Brunette et al., 2019).

To measure gene–gene evolutionary rate covariation, PhyKIT
implements the mirror tree method (Pazos and Valencia, 2001; Sato
et al., 2005), which examines whether two trees have correlated
branch lengths. Specifically, PhyKIT calculates the Pearson correl-
ation coefficient between branch lengths in two phylogenetic trees
that share the same tips and topology. To account for differences in
taxon representation between the two trees, PhyKIT first automatic-
ally determines which taxa are shared and prunes one or both such
that the same set of taxa is present in both trees. PhyKIT requires
that the two input trees have the same topology, which is typically
the species tree topology inferred from whole genome or proteome
data. Thus, the user will typically first estimate a gene’s branch
lengths by constraining the topology to match that of the species
tree. When running this function, users should be aware that many
biological factors, such as horizontal transfer (Doolittle and
Bapteste, 2007), incomplete lineage sorting (Degnan and Salter,
2005) and introgression/hybridization (Sang and Zhong, 2000), can
lead to gene histories that deviate from the species tree. In these
cases, constraining a gene’s history to match that of a species may
lead to errors in the covariation analysis.

Due to factors including time since speciation and mutation rate,
correlations between uncorrected branch lengths result in a high fre-
quency of false positive correlations (Chikina et al., 2016; Clark
et al., 2012; Sato et al., 2005). To ameliorate the influence of these
factors, PhyKIT first transforms branch lengths into relative rates.
To do so, branch lengths are corrected by dividing the branch length
in the gene tree by the corresponding branch length in the species
tree. Previous work revealed that one or a few outlier branch length
values can be responsible for false positive correlations and should
be removed prior to analysis (Clark et al., 2012). Thus, PhyKIT
removes outlier data points defined as having corrected branch
lengths greater than five (i.e. removing gene tree branch lengths that
are five or more times greater than their corresponding species tree
branch lengths). Lastly, values are converted into relative rates using
a Z-transformation. The resulting relative rates are used when calcu-
lating Pearson correlation coefficients.

2.3 Identifying polytomies in phylogenomic data
Rapid radiations or diversification events have occurred throughout
the tree of life including among mammals, birds, plants and fungi
(Jarvis et al., 2014; Li et al., 2020; Liu et al., 2017; One Thousand
Plant Transcriptomes Initiative, 2019). Polytomies correspond to in-
ternal branches whose length is 0 (or statistically indistinguishable
from 0) and can be driven either by biological (e.g. rapid radiations)
or analytical (e.g. low amount of data) factors. Thus, polytomies are
useful for inferring rapid radiation or diversification events and
exploring incongruence in phylogenies (Li et al., 2020; One
Thousand Plant Transcriptomes Initiative, 2019; Sayyari and
Mirarab, 2018).

To identify polytomies, a modified approach to a previous
strategy was implemented (Sayyari and Mirarab, 2018). More spe-
cifically, the support for three alternative topologies is calculated
among all gene trees from a phylogenomic dataset. For example,
in species tree ((A, B),C), D);, if examining the presence of a poly-
tomy at the ancestral bipartition of tips A, B and C, PhyKIT will
determine the number of gene trees that support ((A, B),C);, ((A,
C),B); and ((B, C),A); using the rooted gene trees provided by the
user. Equal support for the three topologies (i.e. the presence of a
polytomy) among a set of gene trees is assessed using a Chi-
squared test. Failing to reject the null hypothesis is indicative of a
polytomy (Sayyari and Mirarab, 2018). Note that this approach is
distinct from the approach of Sayyari and Mirarab to identify pol-
ytomies because PhyKIT uses a gene-based signal rather than a
quartet-based signal. The difference between the two methods is
that each gene contributes equally to the inference of a polytomy
when a gene-based signal is used, whereas genes with greater
taxon representation (which contain a greater number of quartets)
will contribute a greater signal during polytomy identification
when a quartet-based signal is used. From a technical perspective,
both approaches are simple to implement and require only a single
line of code in the commandline.

3 Results

We outline three example uses of PhyKIT: (1) summarizing informa-
tion content and identifying potential biases in animal, plant, yeast
and filamentous fungal phylogenomic datasets (Laumer et al., 2019;
One Thousand Plant Transcriptomes Initiative, 2019; Shenet al.,
2016b; Steenwyk et al., 2019), (2) constructing a network of signifi-
cant gene–gene covariation, which reveals genes of shared functions
from empirical data spanning �550 million years of evolution
among fungi (Shen et al., 2020) and (3) illustrating how to identify
polytomies using simulated and empirical data (Steenwyk et al.,
2019).

3.1 Summarizing information content and biases in

phylogenomic data
Examining information content in phylogenomic datasets can help diag-
nose potential biases that stem from low signal-to-noise ratios, multiple
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substitutions, nonclock-like evolution and other biological or analytical
factors. To demonstrate the utility of PhyKIT to summarize the infor-
mation content in phylogenomic datasets, we calculated 14 different
metrics known to help diagnose potential biases in phylogenomic data-
sets or be associated with accurate and well supported phylogenetic
inferences (Doyle et al., 2015; Felsenstein, 1978; Liu et al., 2017;
Phillips and Penny, 2003; Philippe et al., 2011; Shenet al., 2016a; Smith
et al., 2018; Struck, 2014) using four empirical phylogenomic datasets
from animals (201 tips; 2891 genes) (Laumer et al., 2019), budding
yeast (332 taxa; 2408 genes) (Shen et al., 2018), filamentous fungi (93
taxa; 1668 genes) (Steenwyk et al., 2019) and plants (1124 taxa; 403
genes) (One Thousand Plant Transcriptomes Initiative, 2019) (Figure 1
and Supplementary Table S1).

Examination of the distributions of the values of the 14 different
metrics revealed inter- and intra-dataset heterogeneity (Fig. 1). For
example, inter-dataset heterogeneity was observed among animal
and plant datasets, which had the lowest and highest average pair-
wise identity across alignments, respectively; intra-dataset hetero-
geneity was observed in the uniform distribution of pairwise
identities in the budding yeast datasets. Similarly, inter-dataset het-
erogeneity was observed in estimates of saturation where the bud-
ding yeast and filamentous fungal MSAs were less saturated by
multiple substitutions than the plant and animal datasets; intra-data
heterogeneity was also observed in all four datasets. Varying degrees
of inter- and intra-dataset heterogeneity was observed for other in-
formation content statistics, which may be due biological (e.g. muta-
tion rate) or analytical factors (e.g. taxon sampling, distinct
alignment, trimming and tree inference strategies).

In summary, PhyKIT is useful for examining the information con-
tent of phylogenomic datasets. For example, the generation of differ-
ent phylogenomic data submatrices by selecting subsets of genes or
taxa with certain properties (e.g. retention of genes with the highest
numbers of parsimony-informative sites or following removal of taxa

with high long branch scores) can facilitate the exploration of the ro-
bustness of species tree inference or estimating time since divergence
(Li et al., 2020; Liu et al., 2017; Salichos and Rokas, 2013; Shen
et al., 2018,2020; Steenwyk et al., 2019; Walker et al., 2019).

3.2 A network of gene–gene covariation reveals

neighborhoods of genes with shared function
Genes with similar evolutionary histories often have shared func-
tions, are coexpressed or are parts of the same multimeric complexes
(Clark et al., 2012; Sato et al., 2005). Using PhyKIT, we examined
gene–gene covariation using 815 genes spanning 1107 genomes and
�563 million years of evolution among fungi (Shen et al., 2020). By
examining 331 705 pairwise combinations of genes, we found 298
strong signatures of gene–gene covariation (defined as r>0.825).
The two genes with the strongest signatures of covariation were
SEC7 and TAO3 (r¼0.87), suggesting that their protein products
have similar or shared functions. Supporting this hypothesis, Sec7 p
contributes to cell-surface growth in the model yeast Saccharomyces
cerevisiae (Novick and Schekman, 1979) and genes with the Sec7
domain are transcriptionally coregulated with yeast-hyphal switches
in the human pathogen Candida albicans (Song et al., 2008).
Similarly, Tao3p in both S. cerevisiae and C. albicans is part of a
RAM signaling network, which controls hyphal morphogenesis,
polarized growth and cell-cycle related processes including cell sep-
aration, cell proliferation and phase transitions (Bogomolnaya et al.,
2006; Song et al., 2008).

Complex relationships of gene–gene covariation can be visualized
as a network (Fig. 2). Examination of network neighborhoods identi-
fied groups of genes that have shared functions and are parts of the
same multimeric complexes. For example, the proteins encoded by
NDC80 and NUF2 are part of the same kinetochore-associated com-
plex termed the NDC80 complex—which is required for efficient

Fig. 1. Summary of information content in four empirical phylogenomic datasets.Fourteenexemplary metrics implemented in PhyKIT help summarize the information content

and identify potential biases in phylogenomic datasets. Each graph displays a violin plot with a black point representing the mean. Error bars indicate one standard error above

and below the mean; however, these are difficult to see in nearly all graphs because they were often near the mean. Abbreviations are as follows: Aln. len.: alignment length;

Aln. len. no gaps: alignment length excluding sites with gaps; DVMC: degree of violation of a molecular clock; Internal branch len.: average internal branch length; patristic

distances: average patristic distance in a gene tree; percent PI sites: percentage of parsimony-informative sites in an MSA; percent var. sites: percentage of variable sites in an

MSA; RCV: relative composition variability
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mitosis (Sundin et al., 2011)—and significantly covary with one an-
other (r¼0.84). Similarly, multiple genes that encode proteins
involved in DNA replication and repair (i.e. POL2, MSH6, RAD26,
CDC9 and EXO1) were part of the same network neighborhood,
consistent with previous work suggesting an intimate interplay be-
tween DNA replication and multiple DNA repair pathways (Boiteux
and Jinks-Robertson, 2013; Lujan et al., 2012; Tsubouchi and
Ogawa, 2000). Other network neighborhoods of genes with shared
function such as ribosome biogenesis, Golgi apparatus-related trans-
port and control of DNA replication were identified (Fig. 2).

Taken together, these results indicate PhyKIT is a useful tool for
evaluating gene–gene covariation and predicting genes’ functions
(Brunette et al., 2019; Clark et al., 2012; Sato et al., 2005). Thus,
we anticipate PhyKIT will be helpful for evaluating gene–gene co-
variation and conducting evolution-based screens for gene functions
across the tree of life.

3.3 Identifying polytomies in phylogenomic datasets
Rapid radiations or diversification events have occurred throughout
the tree of life (Jarvis et al., 2014; Li et al., 2020; Liu et al., 2017;
One Thousand Plant Transcriptomes Initiative, 2019). One ap-
proach to identifying rapid radiations is by testing for the existence
of polytomies in species trees (Li et al., 2020; One Thousand Plant
Transcriptomes Initiative, 2019; Sayyari and Mirarab, 2018).
Polytomies can also arise when the amount of data at hand is insuffi-
cient for resolution (Walsh et al., 1999). To demonstrate the utility
of PhyKIT to identify polytomies, we examined the ability of our ap-
proach to identify a simulated polytomy (Fig. 3A). PhyKIT was able
to conservatively identify the simulated polytomy demonstrating the
efficacy of our approach.

We next examined if there is evidence of polytomies in the evolu-
tionary history of filamentous fungi from the genera Aspergillus and

Penicillium. We examined three branches. The first two branches—
one dating back�110 million years ago (Fig. 3B) and another dating
back �25 million years ago (Fig. 3C)—were not polytomies. In con-
trast, examination of a �60 million-year-old branch involving
Lanata-divaricata, Citrinaand Exilicaulis (Fig. 3D), which are
major lineages (or sections) in the genus Penicillium, was consist-
ent with a polytomy. Given the large number of gene trees used
in our analysis (n¼1668), these results are consistent with a
rapid radiation or diversification event in the history of
Penicillium species.

In summary, these results suggest that PhyKIT is useful in iden-
tifying polytomies in simulated and empirical datasets. More
broadly, these results support the notion that polytomies can be
used to identify rapid radiation events. Beyond polytomy identifi-
cation, PhyKIT can be used for exploring incongruence in phyloge-
nies by calculating gene-support frequencies. Calculations of gene-
based support among different topologies can be used in diverse
applications, including identifying putative introgression/hybrid-
ization events and conducting phylogenetically-based genome-wide
association (PhyloGWAS) studies (Pease et al., 2016; Steenwyk
et al., 2019).

4 Conclusion

We developed PhyKIT, a comprehensive toolkit for processing and
analyzing MSAs and trees in phylogenomic datasets. Executing
functions implemented in PhyKIT would otherwise require extensive
programming, multiple software and/or web-based applications
(Supplementary Table S1); thus, PhyKIT offers users a way to
streamline approaches and pipelines by relying on only one soft-
ware. PhyKIT is freely available on GitHub (https://github.com/
JLSteenwyk/PhyKIT), PyPi (https://pypi.org/project/phykit/) and the

Fig. 2. Gene–gene covariation network inferred from �550 million years of evolution across 1107 fungi.A network of significant gene–gene coevolution identifies network

neighborhoods representative of associated functional categories. For example, the NDC80 and NUF2 genes (toward the top right of the network) were identified to be signifi-

cantly coevolving with one another (r¼ 0.84, P< 0.01, Pearson’s correlation test); they both encode proteins that are part of the same multimeric kinetochore-associated com-

plex (green). Similarly, genes that are DNA replication factors (orange), contribute to DNA replication and repair processes (yellow), participate in Golgi apparatus-related

transport (brown) or ribosome biogenesis (pink) were found to be neighbors in the network. Network visualization was done with the igraph package, v1.2.4.2 (Hunter and

Cohen, 2007), in R, v3.6.2 (https://www.r-project.org/)
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Anaconda Cloud (https://anaconda.org/JLSteenwyk/phykit) under
the MIT license with extensive documentation and user tutorials

(https://jlsteenwyk.com/PhyKIT). PhyKIT is a fast and flexible tool-
kit for the UNIX shell environment, which allows it to be easily inte-
grated into bioinformatic pipelines. We anticipate PhyKIT will be of

interest to biologists from diverse disciplines and with varying
degrees of experience in analyzing MSAs and phylogenies. In par-

ticular, PhyKIT will likely be helpful in addressing one of the great-
est challenges in biology, building, understanding and deriving
meaning from the tree of life.
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