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Abstract

Genome-scale data and the development of novel statistical 
phylogenetic approaches have greatly aided the reconstruction of 
a broad sketch of the tree of life and resolved many of its branches. 
However, incongruence — the inference of conflicting evolutionary 
histories — remains pervasive in phylogenomic data, hampering 
our ability to reconstruct and interpret the tree of life. Biological 
factors, such as incomplete lineage sorting, horizontal gene transfer, 
hybridization, introgression, recombination and convergent molecular 
evolution, can lead to gene phylogenies that differ from the species 
tree. In addition, analytical factors, including stochastic, systematic 
and treatment errors, can drive incongruence. Here, we review these 
factors, discuss methodological advances to identify and handle 
incongruence, and highlight avenues for future research.
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a protein-coding or a non-coding region) in the genome; for simplicity, 
we follow this convention.

Incomplete lineage sorting
Incomplete lineage sorting can occur during the speciation process 
when alleles in a population fail to coalesce due to retention and ran-
dom sorting of ancestral polymorphisms, causing, at times, alleles to 
first coalesce with alleles from more distantly related species (Fig. 2). 
It is common across sexually reproducing organisms because allelic 
polymorphisms often persist across multiple speciation events18–20. 
Incomplete lineage sorting does not always result in gene trees that are 
incongruent with the species phylogeny but, when it does, it is referred 
to as hemiplasy21 (Table 1). Hemiplasy is particularly prevalent when 
populations are large and the time interval between speciation events 
is short22 and can affect a substantial fraction of the genome. Examina-
tion of the evolutionary history among 500-bp windows of the human, 
chimpanzee, bonobo, gorilla and orangutan genomes revealed that 
~37% of the human genome exhibits hemiplasy, and the evolutionary 
histories of these loci conflict with the species tree topology18 (Fig. 2).

By modelling the underlying probability distribution of gene trees 
within a species tree, the multispecies coalescent model provides a 
framework that incorporates incomplete lineage sorting in phylog-
enomic inference23. One approach for evaluating whether hemiplasy 
explains gene tree–species tree incongruence is by simulating trees 
under the multispecies coalescent model and comparing levels of 
observed and expected gene tree incongruence24. If the observed 
incongruence is equal to the expected incongruence under the model, 
then hemiplasy is the major contributor; if not, other analytical or 
biological factors are likely (also) at play.

Other approaches, such as the one implemented by the BEAST 
software, use Bayesian statistics to co-estimate gene trees and species 
phylogenies in the presence of incomplete lineage sorting25,26 (Table 2). 
These fully coalescent methods are computationally expensive, hinder-
ing their use for large phylogenomic data matrices. To reduce compu-
tational costs, summary coalescent-based methods implemented in 
various software packages, including STAR, MP-EST, ASTRAL, ASTER 
and ASTEROID27–31 (Table 2), infer the species tree from pre-inferred 
single-gene trees in phylogenomic data matrices but at the cost of 
increased error rates in gene and species tree inference, especially for 
ancient divergences (see the section Analytical factors). Thus, although 
hemiplasy can contribute to the incongruence of both ancient and 
recent divergences, it is much more likely to be detectable in the latter.

Horizontal gene transfer
Genomic regions that experienced horizontal gene transfer also have 
histories that deviate from the species tree (Fig. 2 and Table 1). For 
example, eukaryotic acquisition of bacterial loci leads to gene phylog-
enies where eukaryotic sequences are nested within clades of bacterial 
sequences5,32. The contribution of horizontal gene transfer to incongru-
ence is asymmetric across the tree of life; horizontal gene transfer is 
very common in Bacteria and Archaea and is a notable driver of genome 
evolution in these lineages33,34. Horizontal gene transfer in eukaryotes 
is less common, although evidence of its importance in eukaryotic 
genome evolution is increasing35.

For lineages with low levels of horizontal gene transfer, incongru-
ence stemming from horizontal gene transfer can be ameliorated by 
removing genes with signatures of transfer from the phylogenomic 
data matrix36. Horizontally transferred genes can be identified using 
phylogeny-based methods such as topology tests (implemented 

Introduction

“The stream of heredity makes phylogeny; in a sense, it is phylogeny. 
Complete genetic analysis would provide the most priceless data for 
the mapping of this stream.”
George Gaylord Simpson1

Phylogenetics aims to reconstruct the evolutionary histories of organ-
isms, genes, traits or other biological features by examining the distri-
bution of inherited characters in descendant lineages and tracing them 
back in time to identify ones that shared a common ancestor. ‘Trees’ 
inferred from phylogenetic analyses of biological features represent 
the best-supported hypotheses of their evolutionary histories, that 
is, the statistically most probable path rather than the ground truth. 
Phylogenetic approaches that use genome-scale data, or phylogenom-
ics, have become the gold standard for understanding the evolution 
of lineages in the tree of life, a prerequisite for understanding the evo-
lution of biological features2–5. Defined initially as predicting gene 
function from phylogenies of homologous genes6, phylogenomics was 
later expanded to include phylogenetic inference using genome-scale 
data7. Phylogenomics has revolutionized systematic biology, resolving 
numerous branches of the tree of life that were previously contentious 
and increasing our confidence in many others8–14.

Despite these successes, phylogenomic studies can sometimes 
support conflicting tree topologies15,16, which suggests that cer-
tain branches of the tree of life are challenging to resolve, even with 
genome-scale data. Some of these branches concern relationships that 
are key to our understanding of the most exciting episodes in evolution 
(for one example, see Box 1), hindering our ability to resolve the tree of  
life. Incongruence is an umbrella term that describes the inference 
of conflicting tree topologies. This phenomenon can be observed at 
all time scales, from very ancient (hundreds of millions to billions of 
years old) to very recent (tens of thousands to millions of years old), 
and at all levels of genomic organization, from whole chromosomes to 
individual sites in a multiple sequence alignment (Fig. 1). The primary 
drivers of incongruence are biological processes that cause the gene-
alogies of DNA sequences to differ from the genealogy of their species 
(for example, hybridization or horizontal gene transfer events)2,5 and 
analytical shortcomings that lead to errors in inference (for instance, 
erroneous orthologue detection or poor model fit)17. Dissecting the 
contribution of biological and analytical drivers of incongruence can 
improve phylogenetic inference and deepen our understanding of 
phylogenesis and the evolutionary process.

Now, more than two decades after the dawn of phylogenomics, 
our understanding of the factors contributing to incongruence has 
matured. Concomitant development of methods and software that 
aid in identifying and accounting for incongruence in phylogenomic 
analyses has improved accuracy in inference. This Review synthesizes 
the biological and analytical factors that drive incongruence, discusses 
methodological advances to identify and handle incongruence, and 
highlights avenues for future research.

Biological factors
Several processes influence the evolution of genomic regions; these 
biological factors can cause a gene tree (which shows the evolutionary 
relationships between sequences of a single gene) to differ from the 
species tree (which shows the evolutionary relationships between dif-
ferent species) and contribute to incongruence (Fig. 2). Note that the 
term ‘gene tree’ is often used as shorthand for any locus (for example, 
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in major programmes such as RAxML and IQ-TREE 2) that evaluate 
whether the gene tree topology indicative of horizontal gene transfer is 
significantly better than topologies that do not invoke transfer37. Hori-
zontally transferred loci can also be detected by sequence composition-
based methods, where notable changes in the GC content or codon 
usage bias of one or more loci relative to the rest of the genome are 
used to identify signatures of horizontal transfer38, or using sequence 
similarity-based methods to detect foreign sequences such as alien 
index39. Sequence composition-based and similarity-based methods 
are faster, can be implemented across entire genomes, and are pri-
marily suitable for recent events where the acquired sequence has 
not substantially diverged from the donor sequence; by contrast, 

phylogeny-based methods are generally more accurate, especially 
for ancient episodes of transfer, but slower and typically used to test 
horizontal transfer for one or a few loci.

An alternative approach is to infer the species phylogeny through 
a probabilistic model of sequence evolution that explicitly models 
horizontal gene transfer as one of the processes that lead to gene 
tree–species tree incongruence40,41, using programmes such as Spe-
ciesRax42. Horizontal transfer can occur between both closely related 
species as well as between distantly related ones. However, irrespec-
tive of the method used, inference of gene transfer — and amelioration 
of its effects on incongruence — among distantly related species is 
much easier than among close relatives. This is because horizontal 

Box 1

Rooting the animal tree
Few branches in the tree of life are as intensely debated as the root 
of animal phylogeny. The two leading hypotheses debate whether 
sponges15,95,212–214 or comb jellies (ctenophores)12,16,67,198,215,216 are the 
sister group to a clade of all other animals. These two hypotheses 
have come to be known as the sponge-sister and ctenophore-sister 
hypotheses, respectively (see the figure). Resolution of the root of the 
animal tree has a bearing on our understanding of how animal cell 
types and tissues evolved217. Sponges lack muscles and a nervous 
system and are sometimes thought of as morphologically ‘simpler’ 
animals compared to ctenophores, which have both218–220. Which 
hypothesis is correct also has implications for whether ctenophore 
nervous systems are structurally and genetically homologous 
to those of bilaterian animals221,222, with some arguing that the 
ctenophore nervous system evolved independently223.

Numerous biological and analytical factors contribute to this 
challenging phylogenetic problem. Much of the controversy has 
centred around whether site-homogeneous (with gene partitioning) 
or site-heterogeneous models of sequence evolution are most 
appropriate for reconstructing the animal phylogeny198,224. These 
models are largely employed to combat long-branch attraction, 
an artefact central to the debate because ctenophores have a 
long branch leading up to the lineage225. Site-heterogeneous 
models with many categories tend to support the sponge-sister 
hypothesis15,198, whereas site-heterogeneous models with fewer 
categories and site-homogeneous models tend to support the 
ctenophore-sister hypothesis198. Some simulation analyses suggest 
that site-heterogeneous models underperform site-homogeneous 
models with gene partitioning226 and others suggest the opposite225. 
Aimed at reducing saturation and compositional biases, data matrix 
recoding analyses supported the sponge-sister hypothesis153,212; 
however, some of these analyses212 failed to recover well-
established monophyletic clades, such as Chordata, suggesting 
that analyses of non-recoded data were more accurate227. Poor 
taxon sampling has also long impacted this phylogenetic question, 
but new genomes and transcriptomes have recently been made 
available for key lineages — sponges, ctenophores, cnidarians and 
placozoans15,16,153. Outgroup choice has also been important to the 
debate: the sponge-sister hypothesis is most frequently supported 
when choanoflagellates are chosen as the outgroup, whereas 

the ctenophore-sister hypothesis is supported when a broader 
sampling of single-celled relatives of animals (Holozoa) and fungi 
(Opisthokonta) is used198.

Several other factors, such as orthologue inference errors and 
multiple sequence alignment errors, are likely at play. The possibility 
that additional biological factors, such as hybridization or incomplete 
lineage sorting, also contribute cannot be excluded; however, 
detecting the effect of multiple analytical and biological factors in 
such an ancient divergence is challenging. Resolving the root of the 
animal tree may require extensive amounts of new (high-quality) 
data such as expanded taxon sampling of sponge, ctenophore and 
choanoflagellate genomes217. Similarly, other lines of evidence, such 
as investigations of synteny conservation using chromosome-level 
genome assemblies228 — an independent line of evidence that does 
not have the same pitfalls as sequence data analyses — may shed 
light on the root of the animal tree. Interestingly, a very recent study 
identified seven genomic regions displaying synteny conservation 
across animals except for ctenophores but no regions with conserved 
synteny across animals except for sponges, providing support for the 
ctenophore-sister hypothesis229.
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gene transfer between closely related species is much more difficult 
to distinguish from other evolutionary processes such as differential 
gene duplication and loss.

Hybridization, introgression and recombination
The exchange of genetic material between species during hybridization 
or introgression introduces alleles with evolutionary histories that 
deviate from the history of species, leading to gene tree–species 
tree incongruence43,44 (Fig. 2). When the hybrid species has the same  
ploidy as the parental species, hybridization can be detected through 
phylogeny-based and sequence read-mapping methods. In phylogeny-
based methods, phylogenomic data matrices containing loci from the 
hybrid and both parental species are expected to show nearly equal 
support (using measures such as internode certainty, gene support 
frequency and concordance factors; see the section Detecting incon-
gruence) for two distinct topologies because roughly one-half of the 
hybrid genome derives from each parent45. Similarly, in sequence read-
mapping methods, such as the one implemented in sppIDer46 (Table 2), 
half of the sequence reads of the hybrid are expected to map to one 
parental species and the other half to the other parental species. Hybrid 
species that differ in their ploidy from the parental species (for example, 
allodiploid hybrids) can also be detected using the above methods 
but their gene number is also expected to be the sum of the genes in 
the parental species47. Approaches that ameliorate the contribution 
of hybridization to incongruence include first separating the hybrid 
genome into parental subgenomes prior to phylogenomic inference47 
and using probabilistic models that explicitly incorporate hybridization 
as one of the processes contributing to incongruence48.

Introgression can also affect large genomic regions that can be 
several megabases in size or greater and lead to incongruence but it 
is potentially more challenging to detect because the percentage and 
distribution of introgressed regions can vary. Methods for introgres-
sion detection typically aim to identify allele patterns across species 
that significantly deviate from a null model in which these patterns are 
governed only by incomplete lineage sorting (and no introgression). 
These include the D-statistic (also known as the ABBA-BABA test), which 
is designed to detect gene flow between two taxa in a four-taxon phylog-
eny49; DFOIL, which expands the D-statistic for the five-taxon case50; and 
D3 and the branch-length test, which use the signal of pairwise diver-
gence51 — wherein gene trees that support introgression have shorter 
branch lengths52 — for introgression detection (Table 2). Removing loci 

with signatures of introgression or directly modelling the process can 
ameliorate incongruence stemming from introgression44. For example, 
inclusion of introgressed regions (detected using the D-statistic) in a 
phylogenomic data set of passerine birds led to an incorrect species 
phylogeny; more accurate inference of the species phylogeny required 
careful examination not only of the topologies of individual loci but 
also of some of their properties such as recombination frequency and 
nucleotide diversity43.

Recombination, a frequent phenomenon in diverse lineages, 
including prokaryotes and viruses, can also give rise to mosaic 
sequences and incongruence. In these instances, incongruence 
depends on the fraction of recombinant sites and how closely related 
the taxa are53. Sequences with evidence of recombination can be 
detected using PhyPack or RDP54,55 and removed from the data matrix 
before inference. Accurate inference of all three processes is inversely 
proportional to the ages of the events; therefore, evaluating their 
contribution to incongruence in ancient divergences is challenging.

Natural selection
Natural selection generally leads to the divergence of sequences; how-
ever, selection for the same or similar traits in distantly related taxa 
can result in convergent molecular evolution56 (Table 1). Thus, trees 
that contain sequences that experienced convergent evolution may 
erroneously suggest that these sequences are closely related, reflecting 
the shared influence of selection rather than common ancestry (Fig. 2). 
For example, phylogenetic analysis of the gene prestin, which encodes 
a transport protein present on the membrane of cochlear outer hair 
cells, groups sequences from echolocating organisms, such as bats 
and whales, together. This grouping occurs because the bat and whale 
sequences of prestin have experienced convergent molecular evolution 
as bats and whales are not sister lineages57. One method for detecting 
convergent sequence evolution is reconstructing ancestral sequences 
and identifying convergent amino acid substitutions in independent 
branches of the species phylogeny, if known58. Ancestral sequence 
reconstruction can be done with diverse software, including IQ-TREE59, 
FireProtASR60 and PhyloBot61 (Table 2). Cases of convergent molecular 
evolution that affect one or a few genes are best handled by removing 
such genes, if they are known, from the data matrix before tree inference 
but their contribution to incongruence is generally expected to be small.

Convergent molecular evolution can also be observed in phylo
genomic analyses of entire genomes or proteomes. For example, 
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Fig. 1 | Incongruence at different levels of genomic organization. The 
topology shown in blue supports a sister group relationship of taxa A and B, 
whereas the red topology supports a sister group relationship of taxa A and C 
(part a). The inference of such conflicting topologies defines incongruence. 
Incongruence can occur at different levels in the genome, such as among whole 
chromosomes (for example, analyses of one chromosome support the blue 

topology but analyses of another support the red topology) (part b), regions of a 
chromosome (grey regions represent lack of homology) (part c), genes (or loci) 
(part d), within a gene or locus (for example, different domains support different 
topologies) (part e) and among sites in a multiple sequence alignment (part f). 
Note that incongruence is also prevalent in other types of data (for example, 
behavioural or morphological traits) and can occur at all evolutionary depths.



Nature Reviews Genetics

Review article

convergent amino acid usage, such as the convergence observed in 
high-salt adapted Methanonatronarchaeia and Haloarchaea towards 
similarly acidified amino acid compositions in their proteomes, can 
obfuscate phylogenomic inference62. In such cases, incongruence 
can be reduced through exclusion of affected sites, character recoding 
(see the section Character recoding) and the use of models that explic-
itly account for compositional heterogeneity. For example, recent 
analyses on the evolutionary origins of mitochondrial genomes, a  
case of incongruence where compositional biases are at play63, using 
a model that accommodates both across-site and across-branch com-
positional heterogeneity supported mitochondria as the sister lineage 
to Alphaproteobacteria64.

Analytical factors
The content of phylogenomic data sets and choices in how these data 
sets are constructed and analysed can also contribute to incongruence 
(Fig. 3). Incongruence due to stochastic errors stems from statistical 
uncertainty when too few molecular markers or taxa are analysed. 
Incongruence from systematic errors stems from incorrect or inad-
equate assumptions in analysis such as substitution model misspecifi
cations, a lack of realistic models or erroneous orthologue detection. 
Finally, choices in experimental design or treatment of phylogenomic 
data are an emerging category of error that can also lead to incon-
gruence, sometimes exacerbating or leading to additional stochastic 
and/or systematic errors; we term these treatment errors.

Stochastic errors
Taxon sampling. Taxon sampling has a critical role in species tree 
inference and incongruence (Fig. 3a) because the number and taxo-
nomic distribution of the sampled taxa influence numerous down-
stream analyses such as predicting orthologous groups of genes and 
the estimation of substitution model parameters (Table 1). Generally, 
including more taxa improves tree inference but can lead to speed 
versus accuracy trade-offs (see the section Treatment errors). In some 
cases, incongruence can guide the sampling of additional taxa. For 
example, the placement of the family Ascoideaceae, represented by 
a single taxon, was unstable in early phylogenomic studies of Saccha-
romycotina yeasts65–67, but the inclusion of three additional taxa from 
Ascoideaceae stabilized its placement68. Similarly, the inclusion of 
additional taxa that diverged near the base of the land plant phylogeny 
increased the stability of phylogenetic inference69–71. However, taxon 
pruning, such as removing rogue taxa whose placement is unstable 
across a set of trees (for example, across a set of gene trees), may also 
improve congruence and accuracy in some cases72,73. Comprehensive 
taxon sampling may not always be possible, for example, for ancient 
lineages that contain one or a few closely related extant species such 
as coelacanths and lungfish74. However, studies of ancient DNA can 
shed light on phylogenetic relationships in cases where extant taxon 
sampling is difficult or impossible75,76.

Locus sampling. How much sampling of sequence data is required 
depends on the specific evolutionary history of the lineage examined 
and how ancient or recent it is, on the information content of the loci 
used to reconstruct it, and on the evolutionary history of the loci9,77,78  
(see the section Biological factors). Thus, incongruence stemming 
from limited sampling of sequence data can affect the resolution of 
ancient and recent divergences79,80 but can generally be improved 
with additional sampling of molecular markers (Table 1). Additional 
molecular markers can be obtained using programmes that identify 

single-copy orthologues from multi-copy gene families, for example, 
OrthoSNAP or DISCO81,82 (Table 2). However, there is a limit imposed 
by the sequence divergence of the genomes examined, such that the 
resolution of relationships of genome sequences that contain relatively 
few informative sites and/or many taxa, such as the SARS-CoV-2 whole-
genome alignments80, will be challenging from sequence data alone. 
Additionally, data sets that contain short sequences (for example, 
gene fragments or short genes) often contain insufficient numbers of 
sites for robust gene tree inference when using summary-based coales-
cence methods and can contribute to incongruence83 (Fig. 3a) but, at 
times, this limitation can be overcome by collapsing poorly supported 
branches before species tree inference29.

Molecular markers included in phylogenomic data matrices typi-
cally exhibit partial or incomplete taxon coverage. This can increase 
statistical uncertainty, leading to identical support for multiple topolo-
gies, referred to as tree terraces84,85. For example, in a 3-locus, 298-taxon 
data matrix from grasses (Poaceae), with taxon coverage of 66%, the 
optimal tree is on a terrace with 61.2 million other equally supported 
topologies84. Tree terraces can be addressed through increased taxon 
coverage across molecular markers and locus sampling. For example, 
analysis of a 129-locus, 117-taxon data matrix of arthropods, with a 
coverage density similar to that of the data set of grasses (65%), yielded 
a single optimal tree84,86. The Gentrius function in IQ-TREE can help 
identify and characterize phylogenetic terraces59 (Table 2).

Partial taxon coverage can stem from genuine differences in the 
gene content of organisms or from missing data (for example, from 
incomplete genome assemblies or errors in gene annotation). To 
reduce the negative effects of partial taxon coverage on inference, phy-
logenomic studies typically implement a taxon occupancy threshold of 
50% or higher per locus68,87. However, different taxon occupancy thresh-
olds may be optimal for different clades. For example, among Lori and 
Lorikeet birds, a taxon occupancy threshold of 70% was necessary to 
ameliorate the impact of missing data88.

Systematic errors
Orthologue inference. Phylogenomic analyses often rely on single-
copy orthologous genes, but errors in orthology inference, such 
as hidden orthology, can lead to incongruence. The over-splitting 
of orthologous groups of genes can stem from sequence length 
biases among orthologues because both BLAST bit scores and 
expectation values have a length dependency: longer sequences 
that contain many hundreds or thousands of base pairs have higher 
maximum bit scores and lower expectation values. Thus, varia-
tion in sequence length within an orthologous group of genes can 
lead to the exclusion of shorter sequences89 (Fig. 3a and Table 1). 
Hidden orthology can also stem from a failure to detect rapidly 
evolving orthologues, an issue exacerbated across large evolution-
ary distances90, resulting in artefactual inferences of lineage-specific 
genes. Hidden orthologues can be detected using ‘bridging’ methods 
such as Leapfrog, an algorithm for the identification of instances of  
reciprocal best BLAST hits in two different orthologous groups 
of genes91 (Table  1). Probabilistic modelling approaches, such  
as profile Hidden Markov Models implemented in HMMER that lever-
age site-specific parameterization of conservation (or lack thereof) 
from multiple sequence alignments, are more sensitive in detecting 
rapidly evolving orthologues92 and reduce the risk of hidden orthol-
ogy (Table 2). Improved taxon sampling (for example, inclusion 
of under-represented lineages) in multiple sequence alignments 
used to construct profile Hidden Markov Models, such as those 
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implemented in TIAMMAt, can further improve the sensitivity of 
sequence similarity searches93 (Table 2).

Another systematic error source is the asymmetry in rates of gene 
duplication and loss between species, which can result in hidden paralogy.  
At shallow evolutionary depths (that is, when comparing species that 
diverged less than a hundred million years ago), hidden paralogy can 
be detected by examining synteny, for example, examining the synteny 
of six yeast species that underwent differential patterns of gene loss 
since a shared whole-genome duplication event revealed that ~10% of 
inferred single-copy orthologues were hidden paralogues94. Detecting 
hidden paralogy instances deeper in time (that is, when comparing 
species that diverged hundreds of millions or billions of years ago) is 
more challenging because synteny is likely not conserved. In such cases, 
hidden paralogues can potentially be detected by searching for gene 
trees where well-known clades are not monophyletic95,96. Alternatively, 
because hidden paralogues can be quite divergent from the rest of the 
sequences in an orthogroup, they can also be identified by examining 
gene trees for taxa that have unexpectedly long terminal branches 
using software such as TreeShrink97, PhyloFisher98 and PhyKIT96 
(Table 2). Inparalogues, especially species-specific ones, can easily 
be handled by retaining one of the two sequences as implemented in 
PhyloTreePruner99 and OrthoSNAP81.

Errors in orthologue inference can also stem from contaminated 
sequences in genome assemblies, a key concern in metagenome-
assembled genomes. The degree of contamination (and completeness) 
of a given genome can be evaluated with the CheckM100 and miCom-
plete101 programmes, and contaminant sequences can be removed 
prior to inference.

Modelling substitutions. Traditional substitution models are site-
homogeneous models, which use one reversible substitution matrix 
and the same nucleotide or amino acid frequencies for all sites in a data 
matrix. Early nucleotide models assumed equal substitution rates and 
base frequencies102. Later models incorporated biologically informed 
parameters such as accounting for differences in the rates of transitions 
and transversions or base frequencies103,104. The most parameter-rich 
model among reversible models for nucleotide sequences is the gen-
eralized time-reversible model, which uses unequal substitution rates 
and base frequencies105. Nucleotide substitution models that relax 
the assumptions of reversibility (that is, the rate at which a particular 
nucleotide, say A, changes to another one, say G, is not the same as 
the rate of a G changing to an A), stationarity (nucleotide frequen-
cies do not change over time) and independence (changes at each 
site in the alignment are independent of changes at other sites) also 
exist, but they are computationally expensive and not typically used 
in phylogenomic studies106.

In contrast to these mechanistic substitution models for nucleo-
tide sequences, substitution models for amino acid sequences are often 
inferred from empirical multiple sequence alignments. For example, 
the amino acid exchange probabilities in the mtMAM substitution 
model were estimated empirically by examining the rates of amino acid 
substitutions across the mitochondrial proteomes of 20 mammals107; 
other substitution models, such as WAG108 and LG109, are derived by 
estimating substitution rates from larger, more diverse data bases of 
amino acid sequence alignments like Pfam.

Determining the best-fitting nucleotide and amino acid substitu-
tion models is often done using likelihood ratio tests and Akaike or 
Bayesian information criteria110. The latter outperform likelihood ratio 
tests but also have their shortcomings, which can result in the wrong 
model being favoured111. Of note, model fit does not always predict 
phylogenetic tree accuracy, and models of variable fit can sometimes 
result in consistent phylogenetic trees112. For example, the generalized 
time-reversible model is often the best-fitting nucleotide reversible 
model; however, the large number of estimated parameters in this model 
may need to be revised for specific analyses113. In general, the modelling 
of substitutions is more challenging in ancient divergences than in more 
recent ones because the variation of mutational processes and evolution-
ary rates is typically greater in analyses of distantly related taxa. Another 
avenue of modelling sequence evolution is through direct experimental 

Fig. 2 | Major biological factors that contribute to incongruence. The true 
species phylogeny is depicted in grey (top). Six exemplary processes that 
contribute to incongruence are depicted (bottom). For each example, the 
true species history is depicted in grey and the evolutionary history of a locus 
is depicted as lines within the species history. Incomplete lineage sorting can 
lead to gene trees that differ from the species phylogeny due to variation in the 
sorting of ancestral polymorphisms. Horizontal gene transfer, hybridization and 
introgression can also lead to gene phylogenies that differ from the species tree 
due to non-vertical evolution. Recombination can result in loci with chimeric 
evolutionary histories. Here, two distinct loci depicted in red and blue recombine 
on the branch leading to species A, resulting in one part of the gene that tracks 

with the evolutionary history of the red locus and another that tracks with the 
evolutionary history of the blue locus. Ancestral gene duplication followed by 
asymmetric patterns of paralogue loss can lead to hidden paralogy. Here, gene 
duplication occurred in the last common ancestor of all four taxa, giving rise 
to blue and red paralogues. Loss of the red paralogue in taxa A and C and loss of the 
blue paralogue in taxa B and D results in a one-to-one paralogous group of genes 
whose evolutionary history differs from that of the species. Independently 
evolved traits in different phylogenetic lineages can be associated with convergent 
molecular evolution (green), meaning that loci independently underwent similar 
nucleotide or amino acid substitutions in their sequences. One or a combination 
of these factors can contribute to loci incongruent with species histories.

Table 1 | Drivers of incongruence

Driver of incongruence Factor Refs.

Incomplete lineage sorting Biological 20,24,194

Horizontal gene transfer Biological 36,40,195,196

Hybridization or introgression 
and recombination

Biological 43,44

Natural selection Biological 57,58

Sampling (taxon and locus) Analytical, stochastic error 83,197,198

Insufficient number of genes 
or divergent sites

Analytical, stochastic error 2,9,11,80

Erroneous orthologue 
detection

Analytical, systematic error 87,89,95,97,199

Model misspecification Analytical, systematic error 8,125,126,200

Multiple sequence alignment 
errors

Analytical, treatment error 143,144

Excessive trimming Analytical, treatment error 148,149

Inappropriate character 
recoding

Analytical, treatment error 154,155
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Table 2 | Tools to investigate incongruence in large genomic data sets

Software or method Utility category Utility details Refs.

Bag of little bootstraps Bipartition support metric Median bagging of bootstrap support assessed using few little samples and 
a small subset of sites is a rapid method to infer bootstrap trees and provides 
similar patterns of support compared to traditional bootstrapping procedures

201

Gene and site concordance 
factors

Bipartition support metric Bipartition support that details how many ‘decisive’ genes or sites support  
a given bipartition in a reference tree

168

Internode or tree certainty Bipartition support metric Identifies bipartitions in a reference phylogeny that also have a well-supported 
alternative topology

172–175

UFBoot2 Bipartition support metric Ultrafast bootstrap approximations that are robust to model violation 202

IQ-TREE 2, FireProtASR, PhyloBot Convergent sequence evolution Software for inferring ancestral sequences across nodes of a phylogeny; these 
pieces of software can be used to detect convergent sequence evolution

59–61

RERconverge Convergent sequence evolution Identifies genes in phylogenomic data matrices with signatures of convergent 
relative evolutionary rates in lineages with similar phenotypes

203

ClipKIT Data processing and analysis Multiple sequence alignment trimming wherein informative sites are retained 
rather than removing highly divergent sites

149

Concaterpillar Data processing and analysis Identifies congruent loci in a phylogenomic data matrix 204

ConJak Data processing and analysis Identifies sequence outliers compared to the central mean of a phylogenomic 
data matrix

205

ConWin Data processing and analysis Tests for within-protein incongruence using a sliding window approach 205

PhyKIT Data processing and analysis Broadly applicable phylogenomic toolkit for data processing and analysis 
such as examining information content biases, gene–gene coevolution and 
polytomy testing

96

PhyloFisher Data processing and analysis Collection of scripts for data set building and trimming phylogenomic data 
sets; also features a data base of eukaryotic orthologues

98

RogueNaRok Data processing and analysis Identification of rogue taxa in a phylogenomic data set 72

Root Digger Data processing and analysis Uses a non-reversible Markov model to calculate the likelihood of the root 
position in a tree

140

TreeShrink, PhyloFisher and 
PhyKIT

Data processing and analysis Identifies spurious orthologues from unexpectedly long terminal branches 96–98

abSENSE Homology and/or orthology 
detection

Calculates the probability that homologue detection may fail 90

BLAST Homology and/or orthology 
detection

Searches for similar sequences by using measures of local similarity 206

Leapfrog Homology and/or orthology 
detection

Combines over split orthologues using reciprocal best BLAST hits 91

OrthoFinder Homology and/or orthology 
detection

Infers groups of orthologous genes 89

OrthoSNAP and DISCO Homology and/or orthology 
detection

Decompose multi-copy gene families into subgroups of single-copy 
orthologous genes

81,82

Profile hidden Markov models Homology and/or orthology 
detection

Probabilistic inference method that accounts for position-specific variation  
in sequences

92

TIAMMAt Homology and/or orthology 
detection

Increases sensitivity of sequence similarity searches by incorporating 
under-represented lineages in profile Hidden Markov Models

93

ASTRAL and PhyKIT Hypothesis testing Both pieces of software enable researchers to conduct polytomy testing  
at a specific bipartition in a phylogeny

29,96

Gene-wise and site-wise log-
likelihood scores; gene-wise 
quartet scores

Hypothesis testing Allows researchers to examine gene-wise and site-wise support between 
two topologies using maximum likelihood; gene-wise support can also be 
examined using quartet scores

67,158

D-statistic (also known as the 
ABBA-BABA test), DFOIL, D3 and 
the branch-length test

Introgression detection Diverse methods that detect introgression events using sequence or 
phylogenetic information

44, 
49–51

NetRAX Phylogenetic network inference Maximum likelihood inference of phylogenetic networks when incomplete 
lineage sorting is not a factor

180

PhyloNet Tree inference Maximum parsimony, maximum likelihood and Bayesian inference  
of phylogenetic networks from locus tree estimates

179
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measurement — mutagenesis, functional selection and deep sequencing. 
These experimentally derived models have substantially improved fit 
compared to those with few or hundreds of parameters114.

Partitioning concatenated data matrices — that is, applying dif-
ferent site-homogeneous substitution models to distinct molecular 
markers or portions of an alignment — can account for heterogeneity in 
substitutions among sites and lead to more accurate estimates of phylo
geny115. Supermatrices can be partitioned by biological features (for 
example, genes or codon positions) or be algorithmically defined116. 
An alternative to partitioning is site-heterogeneous models, wherein 
nucleotide or amino acid equilibrium frequencies differ across sites 
of a multiple sequence alignment. Site-heterogeneous models fit data 
better than site-homogeneous models and are thought to be superior at 
ameliorating long-branch attraction artefacts117,118. Consequently, site-
heterogeneous models have risen in popularity and helped resolve the  
placement of several anciently diverged lineages119,120 but are also 
the focal point of controversies such as the rooting of the animal tree 
(Box 1). In other cases, using site-heterogeneous models has shed light 
on the evolutionary relationships among the three domains of life, 
supporting the hypothesis that eukaryotes originated from within 
Archaea (the two-domain hypothesis)121.

Substitution model misspecification can bias topology estimation, 
contributing to incongruence17,122–124 (Fig. 3c and Table 1). One well-
known source of incongruence that stems from model misspecification 
is long-branch attraction125,126. Long-branch attraction is common in 
phylogenomic data matrices containing taxa that greatly vary in their 
evolutionary rates or lineages undergoing accelerated evolutionary 

rates as observed in bacterial endosymbionts127 and parasitic fungi128. 
Outgroup taxa may also introduce long branches, increasing the poten-
tial for long-branch attraction artefacts (see the section Rooting strat-
egy). In addition to using site-heterogeneous models125, long-branch 
attraction artefacts can sometimes be ameliorated by including taxa 
whose placements break long branches129,130 (see the section Taxon 
sampling). Notably, long-branch attraction can also occur when models 
are correctly specified and be exacerbated when partitioning phylog-
enomic data sets126. Other approaches attempt to better approximate 
true processes of sequence evolution. For example, heterotachy, which 
is not accounted for by either site-homogeneous or site-heterogeneous 
models131, can decrease phylogenetic accuracy due to long-branch 
attraction artefacts126,132. The GHOST (general heterogeneous evolution 
on a single topology) model of sequence evolution can partly account 
for heterotachy by incorporating features of mixed substitution and 
mixed branch-length models. The GHOST model has helped resolve 
some phylogenetic controversies such as the placement of turtles8.

Rooting strategy. Rooting strategies have been debated for a long 
time, especially in the context of outgroup taxa driving long-branch 
attraction artefacts133. The recent controversy surrounding the root 
of animal phylogeny has highlighted the relevance of these debates 
(Box 1). Although there is no consensus on selecting outgroup taxa134, 
it is broadly accepted that thorough sampling of representatives of 
diverse lineages improves phylogenetic inference135.

Other methods aim to infer the root of a phylogenetic tree with-
out using outgroup taxa. These include the use of paralogues as 

Software or method Utility category Utility details Refs.

SplitsTree Phylogenetic network inference Splits graph inference using multiple sequence alignments, distance matrices 
or sets of trees

177

GHOST Substitution models Edge-unlinked mixture model consisting of several site classes with separate 
sets of model parameters and edge lengths on the same tree topology

8

QMaker Substitution models Estimates general time-reversible protein matrices, which describe rates  
of substitutions between amino acids, from multiple sequence alignments

200

Asteroid Tree inference Supertree method for species tree inference that is robust to missing data 31

ASTRAL, ASTRAL-PRO and ASTER Tree inference Quartet-based supertree method that accounts for partial gene trees, paralogs 
and gene tree uncertainty

29,30, 
207

BEAST Tree inference Bayesian approach for phylogenetic tree inference and divergence time 
estimation

26

BPP Tree inference Full-likelihood implementation of the multispecies coalescent 25

IQ-TREE 2 Tree inference Maximum likelihood tree inference method that uses hill-climbing and 
stochastic perturbation to search tree space; moreover, the Gentrius function 
can help identify and characterize phylogenetic terraces

59

MP-EST Tree inference Maximum pseudo-likelihood approach for species tree inference 28

PhyloBayes MPI Tree inference Bayesian tree inference method that incorporates finite and infinite mixture 
models to account for site variation

208

RAxML-NG Tree inference Maximum likelihood tree inference method that uses a greedy tree search 
algorithm to explore tree space

209

STAR Tree inference Inference of species trees using average ranks of coalescences 210

SpeciesRax Tree inference Maximum likelihood species tree inference method that explicitly accounts 
for incomplete lineage sorting, gene duplication, gene loss and horizontal 
gene transfer

42

SVDQuartets Tree inference Inference of relationships using quartets and the coalescent model 211

Table 2 (continued) | Tools to investigate incongruence in large genomic data sets
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implemented in the software STRIDE136–138; non-reversible Markov 
models as the one implemented in the software Root Digger139,140; 
relaxed molecular clock models as implemented in BEAST141; the 
minimal ancestor deviation method, which is also based on mole
cular clocks142; and modelling dynamics of gene family evolution41. 

For example, modelling genome duplication, horizontal gene 
transfer and gene loss helped root the archaeal tree of life, plac-
ing it between Diapherotrites, Parvarchaeota, Aenigmarchaeota, 
Nanoarchaeota, Nanohaloarchaea (known as DPANN) and other  
Archaea41.

Taxon 1
Taxon 2
Taxon 3
Taxon 4

Taxon 1
Taxon 2
Taxon 3
Taxon 4

Taxon 1
Taxon 2
Taxon 3
Taxon 4

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

• Insu�icient taxon sampling
• Insu�icient locus sampling
• Fast-evolving lineages
• Rogue taxa
• Outgroup choice

• Sequence length biases
• Erroneous orthologue inference
   (hidden paralogy and orthology)

• Misalignment
• Excessive trimming
• Inappropriate recoding

• Irreproducibility
• Single-locus accuracy

Contributor of incongruence

Taxon 4Taxon 3Taxon 2Taxon 1

Taxon 4Taxon 3Taxon 2Taxon 1

Site-homogeneous model Site-homogeneous with partitioning Site-heterogeneous model

• Biological factors

a  Taxon selection

b  Orthology inference

c  Alignment and site trimming

e  Method of tree inference

f  Incongruent gene or species trees

Taxon 1
Taxon 2
Taxon 3
Taxon 4

Taxon 1
Taxon 2
Taxon 3
Taxon 4

Taxon 1
Taxon 2
Taxon 3
Taxon 4

MPSQP---VQ ...
MPSQP---VQ ...
MPSQPYVQVQ ...
M--QPYVQVQ ...

MGH--YEEN ...
M--LRY--- ...
MGHL-YEEN ...
M--LRYEEN ...

MSP-VKG-PR ...
MSPTVK--PR ...
MSPTVKGIPR ...
MS---KGI-R ...

• Long-branch attraction
• Model misspecification
• Inadequate model complexity

d  Selection of substitution model

Concatenation Coalescence

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Taxon 1

Taxon 3

Taxon 2

Taxon 4
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Treatment errors
Multiple sequence alignment. Errors in multiple sequence alignment 
can result in inaccurate phylogenetic inferences and incongruence143,144.  
Alignment errors can stem from errors in orthologue inference (from 
either hidden paralogy or hidden orthology) but can also occur when 
truly orthologous sequences are aligned. Such errors are particularly 
common when sequences in the alignment exhibit high levels of diver-
gence145 (Fig. 3b). Approaches to remedy errors in multiple sequence 
alignments include alignment trimming (see the section Alignment 
trimming), probabilistic modelling to identify clusters of homologous 
characters and dividing the alignment accordingly (as implemented in 
Divvier)146, or masking putative errors in multiple sequence alignments 
using two-dimensional outlier detection methods (as implemented 
in TAPER)147.

Alignment trimming. Although trimming of sites during multiple 
sequence alignment is a widespread practice to reduce alignment 
errors, it can also reduce the accuracy of phylogenetic inference, 
increase statistical uncertainty and lead to incongruence (Fig. 3b and 
Table 1). Generally, more aggressive alignment trimming that removes 
larger numbers of sites increases errors in single-gene tree inferences148. 
For example, entropy-based trimming, which removes divergent sites, 
or multiple rounds of trimming, which often remove more than 20% 
of sites in an alignment, can significantly worsen phylogenetic infer-
ences of tree topology, support and branch-length estimation148,149. 
Recently developed approaches that focus on retaining phylogeneti-
cally informative sites, such as ClipKIT (Table 2), can be equally accurate 
and are more time-saving than no-trimming approaches149.

Character recoding. Saturation by multiple substitutions and com-
positional biases can lead to inaccurate phylogenetic inferences and 
contribute to incongruence. Recoding nucleotides or amino acids 
into fewer character states can combat these issues150–153 (Fig. 3b). 
However, the benefit of combating compositional heterogeneity and 
substitutional saturation can be outweighed by the loss of informa-
tion from reducing the number of character states during recoding 
and increase statistical uncertainty, especially among shorter align-
ments154,155. Thus, recoding can also increase, rather than ameliorate, 
error. Appropriate ways forward include adequately assessing how 
recoding affects compositional heterogeneity or implementing 
alternative recoding schemes; for example, in amino acid sequence 
alignments, a greater number of recoding states outperformed the 
most frequently implemented six-state recoding strategies154. Nota-
bly, errors in multiple sequence alignment, excessive trimming and 
inappropriate character recoding all contribute to erosion of the  
phylogenetic signal.

Concatenation versus coalescence. Phylogenomic data matri-
ces can be analysed as a single supermatrix (an approach known as 
concatenation) or each gene alignment can be analysed separately 
under the multispecies coalescent framework (an approach known 
as coalescence). The two approaches sometimes yield different tree 
topologies, contributing to incongruence68,87. Determining which 
approach is more appropriate for a phylogenomic data set is difficult. 
For example, using simulated multi-locus data, concatenation slightly 
outperformed a fully coalescent-based approach (wherein gene trees 
and species trees are coestimated), whereas using coalescent inde-
pendent sites, both approaches performed comparably156. However, 
an extensive evaluation of coalescent-based and concatenation-based 
approaches when different biological and analytical factors are at 
play is lacking, hindering our knowledge of best practices. Moreover, 
there can be differences in the performance of fully and summary 
coalescent-based methods (wherein gene trees are first estimated and 
then the species tree is estimated by summarizing the collection of gene 
trees). Summary coalescent-based methods are more vulnerable to 
errors in gene tree inference than fully coalescent-based methods but 
newer implementations of summary coalescent-based methods take 
gene tree uncertainty into account30. Analyses with both fully and 
summary coalescent-based methods can be improved through tar-
geted data filtering such as removing loci with low phylogenetic 
informativeness157. Loci that are inconsistent between concatenation-
based and coalescence-based methods can also be pruned from data  
matrices158.

Irreproducibility. A tenet of scientific inquiry is reproducibility.  
Phylogenetic irreproducibility contributes to incongruence and can be  
caused by increasing the number of threads (because threads can 
be initialized in different orders between runs); errors in floating 
point arithmetic, such as rounding errors, and numerical overflow 
and underflow (the storing of a value greater than or smaller than 
the maximum and minimum supported value, respectively); and dif-
ferences in software compilers that result in binaries with slightly 
different orders of operations159,160. Genes with a low phylogenetic 
signal (few parsimony-informative sites) are particularly susceptible 
to irreproducibility; this means that summary coalescent-based meth-
ods, which typically rely on accurately inferred gene tree topologies, 
can be particularly susceptible160. Some problems of irreproducibility 
and issues plaguing bioinformatic software can be remedied through 
rigorous software development practices such as extensive testing 
and continuous integration pipelines149,159. Studies that further our 
understanding of the accuracy and information content of multiple 
sequence alignments may facilitate predicting genes with a greater 
phylogenetic signal77,161–163.

Fig. 3 | Analytical factors can contribute to incongruence at every step in a 
phylogenomic workflow. a, Taxon sampling, including sampling of taxa from 
fast-evolving lineages or of rogue taxa, can affect all downstream analyses in 
phylogenomic studies. b, During orthology inference, biases (for example, 
sequence length biases) and analytical errors (for example, erroneous orthology 
inferences) can contribute to incongruence. Each colour corresponds to a unique 
orthologue present in each of the four taxa. c, Misalignment and excessive 
trimming of individual groups of orthologous genes can further decrease 
the accuracy of phylogenetic inferences and contribute to incongruence. 
An example of erroneous orthologue inclusion is depicted using red font. 
d, Selection of substitution model can influence phylogenetic inferences.  

Some common approaches include site-homogeneous models, site-
homogeneous models with partitioning or site-heterogeneous models. Sources 
of error include model misspecification, inadequate model complexity and 
long-branch attraction artefacts. e, The method of tree inference, for example, 
concatenation (left) or coalescence (right), can be susceptible to multiple 
additional sources of error, including irreproducibility and poor accuracy of 
trees inferred from single genes (single-locus accuracy). f, Even if all analytical 
factors have been adequately addressed and there is no incongruence due to 
them, the resulting locus or species trees may still be exhibiting incongruence 
due to the action of diverse biological factors (Fig. 2).
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Detecting incongruence
Because multiple biological and analytical factors, often initially 
unknown, can contribute to incongruence, several methods examine the 
presence and magnitude of incongruence per se in phylogenomic data 
sets without assuming the presence of specific underlying biological  
or analytical factors.

Measures of branch support
Traditional approaches, such as non-parametric bootstrapping164 
and Bayesian posterior probabilities, are frequently used to exam-
ine bipartition support in a phylogeny; low branch support values 
can be indicative of incongruence. Other branch support methods  
include approximate likelihood ratio tests and the Shimodaira–
Hasegawa approximate likelihood ratio test165. The transfer bootstrap 
expectation method — an approach based on traditional bootstrapping 
but that measures the presence of branches among bootstrap trees as a 
gradual ‘transfer’ distance rather than as a binary presence or absence — 
is more accurate for assessing support among deep branches in data 
sets with large numbers of taxa166. The usefulness of many of these meas-
ures in concatenation analyses of phylogenomic data sets is rather low 
because they almost invariably yield absolute support values, even if 
there is substantial incongruence between sites or loci79. However, these 
measures are highly informative when using summary coalescent-based 
methods to remove loci with low amounts of phylogenetic signal167.

Gene support frequencies and concordance factors
Gene support frequencies measure the frequency of recovering an indi-
vidual branch in a set of gene trees from a phylogenomic data matrix96,168.  
Branches with low gene support frequencies are likely to be incongru-
ent. Concordance factors were initially defined as the proportion of 
the genome that supports a given branch in the species tree169,170 and 
can be measured using BUCKy, a Bayesian approach that estimates 
the joint probability distribution of genes and their phylogenies (or a 
gene-to-tree map) genome-wide169,171. Recently, concordance factors 
were redefined as equivalent to gene support frequencies168, which can 
be calculated using IQ-TREE and PhyKIT59,96 (Table 2).

Internode certainty
Internode certainty is an information theory-based approach that 
considers the relative prevalence of a branch and the second most 
common conflicting branch in a set of trees; internode certainty-all 
considers the relative prevalence of a branch relative to all alterna-
tive conflicting branches in a set of trees172–175. Internode certainty 
measures can help identify branches with substantial conflict, which 
can then be examined further for underlying causes contributing to 
incongruence. Internode certainty measures are distinct in that the 
prevalence of conflicting alternative branches is accounted for, thereby 
providing a measure of the degree of conflict for every branch in a 
phylogenomic tree. Internode certainty can be calculated using the 
software QuartetScores174 (Table 2).

Phylogenetic networks
Evolutionary relationships among organisms are often depicted as 
bifurcating trees, which may not always be appropriate. As discussed 
earlier, many genomes bear the hallmarks of biological factors that 
make the histories of genes and genomes deviate from strict verti-
cal inheritance. By relaxing the assumption of a strictly bifurcating 
topology, reconstruction of the histories of loci from such lineages 
as phylogenetic networks enables the description and visualization of 

incongruence. The underlying data and theory used to infer a phylo
genetic network can differ176; for example, split networks depict all 
possible splits in a set of phylogenies177, whereas reticulate networks 
depict putative evolutionary events such as hybridization178. Software 
for inferring phylogenetic networks includes SplitsTree177, PhyloNet179 
and NetRAX180 (Table 2).

Incongruence search protocols
In addition to the above methods, several protocols have been used 
to search for incongruence in phylogenomic data sets. These include 
repeated subsampling of smaller subsets of loci with a robust phy-
logenetic signal and re-inference of the species phylogeny162, gene 
genealogy interrogation181, examination of phylogenetic signal67 and 
quartet sampling182.

Polytomies
Several clades in the tree of life, such as cichlids and finches, have expe-
rienced elevated rates of speciation, giving rise to evolutionary radiation. 
Such clades have often been influenced by multiple biological (for exam-
ple, introgression or lineage sorting) and analytical (for example, long-
branch attraction for ancient radiations) factors, making phylogenomic 
inference particularly challenging. They often present as polytomies,  
a node where more than two descendant lineages stem from an ancestral 
one. Polytomies can be detected by identifying cases of equal support 
for multiple distinct topologies in sets of single-gene trees96,183. Sup-
port can be measured using gene trees or the quartets of taxa present 
in these gene trees using ASTRAL29, PhyKIT96 and IQ-TREE59 (Table 2).

Future directions
Our knowledge of the tree of life and of the evolution of traits and 
genomes has been transformed by phylogenomics, but incongru-
ence continues to cloud our understanding of some of its branches. 
We discussed biological and analytical factors contributing to incon-
gruence, methods for its detection, and approaches that have helped 
improve the accuracy of phylogenomic inference. In this final section, 
we identify avenues ripe for research and discovery.

Which factors matter and when?
Although the effects of multiple factors on specific instances of 
incongruence have been investigated32,157,160, a unified framework to 
assess the contribution of multiple biological and analytical factors  
to a given case of incongruence is lacking. The evolutionary depth of 
each case of incongruence further complicates assessment of the rela-
tive importance of any factor because our ability to detect their effects 
varies across time scales. For example, incomplete lineage sorting and 
hybridization likely contribute to incongruence of ancient and recent 
relationships but are typically detectable only in studies of recently 
diverged lineages. By contrast, it is typically much easier to detect 
horizontal gene transfer between distantly related taxa than between 
closely related ones. We also know that errors in orthologue inference 
or multiple sequence alignment are greater contributors to incon-
gruence when studying ancient divergences than recent ones90,184.  
However, for a given case of incongruence in deep time, simultane-
ously evaluating the relative contribution of incongruence stemming 
from multiple biological and analytical factors is challenging (Box 1).  
A related issue is identifiability, that is, ascribing an observed con-
flict to certain factors and ruling out others. For example, ancient 
horizontal gene transfer is often difficult to distinguish from gene 
duplication followed by extensive gene loss; attributing incongruence 
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to one specific factor is challenging and often depends on a priori 
knowledge regarding which process is more likely. Developing meth-
ods and computational pipelines that enable simultaneous evaluation 
of potential contributing factors will be key to fully understanding the 
drivers of incongruence.

Data and data sets of ever higher quality
Data quality is paramount to phylogenomic inference. As sequencing 
technologies and other downstream processes, such as methods for 
genome assembly and gene annotation, improve, so does the field of 
phylogenomics. Higher quality and more complete genomes, coupled 
with increased sampling of organisms from taxa under-represented in 
genomic data bases, will help to reduce the impact of hidden paralogy 
and orthology in phylogenomic data sets. Denser data sets will also 
help increase confidence in inferences of the underlying analytical or 
biological drivers of incongruence; for example, confidence in inferring 
hybridization as a potential driver of incongruence may be weak in a 
data set of 100 molecular markers but strong in a 5,000-marker data set.

Mitigating errors in data set construction
Errors that contribute to incongruence can be introduced at all stages 
of phylogenomic analyses, including data matrix construction. Some 
errors may stem from certain strategies employed in a phylogenomic 
pipeline, such as multiple sequence alignment and trimming, being 
suitable for some, but not all, genes. Some features that may influence 
the efficacy of alignment and trimming strategies may be the taxa 
sampled and their evolutionary breadth, although numerous other 
technical contributors of incongruence may be at play. The develop-
ment of pipelines to reproducibly handle phylogenomic data matrix 
construction will greatly facilitate comparative analyses of analytical 
drivers of incongruence across studies.

The forest grows: how can tree space be efficiently examined?
As genomic data increase, phylogenomic studies sampling several 
hundreds to thousands of organisms are becoming commonplace. One 
challenge with inferring phylogenies from such taxon-rich data sets is 
that tree space is vast, making computation challenging. For example, 
the numbers of possible unrooted trees for 3, 5, 7 and 9 taxa are 1, 15, 945 
and 135,135, respectively. As tree space grows, the likelihood of finding 
the non-optimal tree increases, leading to speed-accuracy trade-offs 
and incongruence. However, efficiently searching tree space is key to 
finding an optimal tree; phylogenetic inference programmes that yield 
the highest likelihood scores on phylogenomic data matrices are the 
ones that perform the most extensive explorations of tree space and 
require the longest runtimes185. Moreover, gene-rich data sets present 
their own challenges such as optimizing tree parameters. It is possible 
that the phylogenetic signal in whole genomes will prove insufficient 
for resolving phylogenies of all known species in each major lineage. 
Developing algorithms, including those that leverage the power of 
machine learning163,186–188, that can heuristically explore tree space in 
a reasonable amount of time or evaluate the degree of difficulty in the 
inference task will be critical for resolving the tree of life.

Phylogenomics and green computing
End-to-end phylogenomic analysis requires substantial computational 
resources and large amounts of energy. As the planet grapples with the 
consequences of global climate change, we must work to minimize  
the environmental toll of phylogenomic analyses189. We can reduce the  
carbon footprint of phylogenomics through judicious use of comput-
ing infrastructure, careful experimental design and software choice. 
For example, evaluating substitution model fit using fast and robust 
software such as ModelTest-NG190 and jModelTest191 can result in a 
90% reduction in energy use, resulting in 10% less greenhouse gas 

Glossary

Convergent molecular 
evolution
Independent evolution of similar 
or identical molecular changes 
(for example, gene deletions, 
nucleotide substitutions, gene order 
rearrangements) in organisms from 
different lineages that exhibit similar 
adaptations.

Evolutionary radiation
The occurrence of an elevated rate of 
speciation events in a narrow window 
of evolutionary time.

Heterotachy
The phenomenon of changes in the 
evolutionary rate of a nucleotide or 
amino acid sequence through time.

Hidden orthology
Undetected orthologous relationships 
of genes.

Hidden paralogy
Orthologous groups of genes that 
contain orthologues and paralogues 
(inparalogues and outparalogues) 
stemming from asymmetric patterns 
of duplication and loss.

Horizontal gene transfer
Also known as lateral gene transfer. 
The transfer of genetic material 
between organisms of the same 
or different species through 
non-reproductive means.

Hybridization
The interbreeding of two distinct 
species or lineages.

Inparalogues
Lineage-specific or species-specific 
paralogues wherein the duplication 
event occurred after divergence 
from a reference common ancestor.

Introgression
The interbreeding of two distinct 
species or lineages, followed by 
backcrossing with one of the parental 
species.

Long-branch attraction
The inaccurate inference of taxa with 
high evolutionary rates (giving rise to 
long branches in their phylogenetic 
trees) as closely related.

Model of sequence evolution
Also known as the substitution 
model. Markov models that describe 
rates of nucleotide or amino acid 
substitutions in a locus during  
evolution.

Partial or incomplete taxon 
coverage
The lack of sequences (either because 
they are genuinely absent or because 

they were not collected) from particular 
taxa in a group of orthologous genes.

Phylogenetic irreproducibility
Lack of reproducibility of a tree topology 
between two replicate tree inferences 
using the same software parameters 
(for example, same model of sequence 
evolution or starting seed).

Phylogenetic networks
Graphs of evolutionary relationships 
that, in addition to depicting the splitting 
of lineages, also depict the merging of  
lineages (due to events such as 
hybridization and convergent 
molecular evolution or due to different 
gene tree topologies).

Taxon sampling
Which and how many taxa are selected 
for a phylogenetic analysis.
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emissions192. Similarly, choosing faster programmes in quantifiably 
difficult-to-analyse data sets does not alter the quality of inference 
but can save energy, according to a recent preprint193.

Conclusions
Phylogenomics has revolutionized evolutionary biology by providing 
a clearer picture of the tree of life and a more accurate reconstruction 
of the evolution of biological features. The study of genome-scale data 
from diverse organisms has deepened our understanding of the various 
biological factors that cause the histories of genomic regions to differ 
from those of their species, spurring the development of models that 
consider them in inference. At the same time, it has improved knowl-
edge of the analytical factors that contribute to errors in inference 
and the development of models and protocols for their amelioration. 
These advances, together with ongoing work that tackles some of the 
greatest challenges in the field, will continue to improve our mapping 
and understanding of, as Simpson eloquently put it, “The stream of 
heredity [that] makes phylogeny”1.

Published online: xx xx xxxx
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