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Histone methylation, catalyzed by SET domain-containing lysine methyltransferases, is a conserved epigenetic mechanism

regulating gene expression in eukaryotes. However, the evolutionary dynamics of SET domain proteins and their functional

interplay in fungi remain poorly understood. Here, we analyzed 18,718 SET domain proteins from 1038 fungal genomes and

identified three major clusters, with Cluster 1 enriched for canonical histone methyltransferases. The evolution of the SET

domain protein family coordinates with genome expansion in fungi. Functional characterization of seven Cluster 1 proteins

in Fusarium graminearum, a globally significant fungal pathogen, reveals diverse roles in growth, development, and virulence.

In-depth analyses of two H3K36-specific methyltransferases, Set2 and Ash1, uncover their distinct regulatory functions.

Set2-mediated H3K36me3 is enriched in gene bodies of euchromatic regions and facilitates transcription elongation. In con-

trast, Ash1-mediated H3K36me3 localizes to promoters within facultative heterochromatin and represses transcription.

Notably, Ash1-mediated H3K36me3 cooperates with Polycomb repressive complex 2 (PRC2)-dependent H3K27me3 to si-

lence secondary metabolite (SM) gene clusters. Deletion of ASH1 reduces H3K27me3 levels and derepresses SM gene expres-

sion. Conversely, Set2-mediated H3K36me3, facilitated by Ctk1-dependent RNA polymerase II phosphorylation, promotes

transcriptional elongation of SM genes. Together, these findings reveal evolutionary features of fungal SET domain proteins

and uncover a synergistic interplay between H3K36me3 and H3K27me3 in regulating fungal secondary metabolism and

virulence. This study advances our understanding of epigenetic regulation in fungi and provides potential targets for con-

trolling fungal pathogens.

[Supplemental material is available for this article.]

Transcriptional regulation in eukaryotes is profoundly influenced
by chromatin status, integrating diverse cellular signals to control
gene expression (Berger 2007). Chromatin dynamics are modulat-
ed by multiple mechanisms, including histone modifica-
tions, DNA methylation, and chromatin remodeling complexes
(Shilatifard 2006; Mattei et al. 2022; Shang and He 2022).
Histone methylation, central to defining chromatin states, distin-
guishes transcriptionally active euchromatin from repressive het-
erochromatin. Histone methylation occurs at specific lysine
residues of histones H3, H4, and H2B, including H3K4, H3K9,
H3K27, H3K36, H4K20, H2BK122, and H2BK130 (Zhang et al.
2024a,b). H3K4 methylation associates with active transcription,
whereas H3K9 and H3K27 methylation link to transcriptional
repression (Freitag 2017). H3K36 methylation, particularly
H3K36me3, functions as a cotranscriptional mark, promoting
transcriptional fidelity by facilitating elongation, preventing cryp-
tic initiation, and restoring chromatin compaction (Carrozza et al.
2005; Kim et al. 2016; Lee et al. 2021). These modifications form a

complex and dynamic network controlling chromatin structure
and gene expression (Martin and Zhang 2005). Histone methyla-
tion is catalyzed by histonemethyltransferases (HMTs), which typ-
ically contain a conserved SET domain that mediates lysine
methylation. Evolutionary studies in plants and animals reveal
considerable SET domain protein functional diversity, specializing
in development and stress responses (Zhang and Ma 2012; Zhao
et al. 2019). Beyond histone lysinemethylation, some SET domain
proteins possess additional domains, such as tudor and chromo
domains, facilitating recruitment to specific chromatin regions
for gene regulation (Schotta et al. 2002; Zhu et al. 2013;
Jurkowska et al. 2017; Chandrasekaran et al. 2024). Limited phylo-
genetic analyses of SET domain proteins across 20 representative
fungal species suggested extensive gene duplications, losses, and
domain rearrangements, implying unique HMT regulatory mech-
anisms in fungi (Ding et al. 2022). However, comprehensive, sys-
tematic analysis of SET domain protein distribution and
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evolutionary patterns across the fungal kingdom, leveraging rapid-
ly accumulating genome sequences, remains unexplored.

H3K36 methylation is particularly important for transcrip-
tional regulation and chromatin organization in eukaryotes
(Wagner and Carpenter 2012; Lam et al. 2022; Krogan et al.
2023). Its biological roles exhibit considerable species-specific
divergence. Mammals employ at least eight enzymes to catalyze
H3K36 methylation, coordinating diverse processes like alterna-
tive splicing and DNA repair, with aberrant patterns linked to hu-
man diseases (Lucio-Eterovic et al. 2010; Shirane et al. 2020). In
plants, three SET domainproteins, SDG4, SDG8, and SDG26, func-
tion as H3K36 methyltransferases. SDG8 is the major enzyme, es-
sential for reproductive development and stress responses
(Cazzonelli et al. 2009; Yang et al. 2014; Li et al. 2020), whereas
SDG4 and SDG26 regulate pollen tube growth and flowering
time (Cartagena et al. 2008; Berr et al. 2015). Fungi further illus-
trate this diversification. Budding yeast utilizes a single methyl-
transferase Set2 to catalyze H3K36me1/2/3 (Keogh et al. 2005).
However, filamentous fungi typically harbor two distinct H3K36
methyltransferases, Set2 and Ash1, with diverse functions. For ex-
ample, inNeurospora crassa, Set2 targets actively transcribed genes,
whereas Ash1 represses silent genes and is essential for viability
(Bicocca et al. 2018). Similarly, in Fusarium fujikuroi and
Magnaporthe oryzae, Set2 and Ash1 exhibit distinct genomic local-
ization and functions, influencing processes like growth, sporula-
tion, and virulence (Janevska et al. 2018; Xu et al. 2023). These
findings highlight the importance of H3K36 methylation in fun-
gal development and gene regulation, along with substantial spe-
cies-specific variations in its biological roles and the underlying
SET domain enzymes.

Furthermore, H3K36 methylation frequently interacts with
other chromatin modifications, such as histone acetylation and
H3K27 methylation, to modulate gene expression. For instance,
Set2-mediated H3K36 methylation recruits the Rpd3S histone
deacetylase complex, suppressing intragenic transcription initia-
tion (Carrozza et al. 2005). In yeast, H3K36me3 anchors the
H3K14 histone acetyltransferase (HAT) Mst2 to euchromatin, pre-
venting its mistargeting (Flury et al. 2017). Antagonistic interac-
tions between H3K36 and H3K27 methylation have been
reported in both plants and animals. In mouse embryonic stem
cells, NSD1-mediated loss of H3K36me2 increases H3K27me3 at
PRC2 target genes (Fang et al. 2021), and inArabidopsis, thesemod-
ifications antagonistically regulate FLC expression (Yang et al.
2014). However, the interplay betweenH3K36 andH3K27methyl-
ation in fungi appears more complex and context-dependent. For
example, inM. oryzae, Ash1-catalyzed H3K36me2 colocalizes with
H3K27me3 (Xu et al. 2023), whereas ASH1 deletion in F. fujikuroi
enhances H3K27me3 levels (Janevska et al. 2018). Furthermore,
N. crassa Ash1 activity has both positive and negative impacts on
H3K27methylation (Bicocca et al. 2018). These divergent observa-
tions suggest multiple models for howH3K36 and H3K27methyl-
ation interact in fungi, highlighting the need for further
investigation into their precise mechanisms in regulating gene ex-
pression, particularly within facultative heterochromatin.

This study first provides a comprehensive evolutionary anal-
ysis of SET domain proteins across the fungal kingdom.
Subsequently, we characterize key Cluster 1 SET domain proteins,
specifically the H3K36-specific methyltransferases Set2 and Ash1,
in Fusarium graminearum, a major fungal pathogen of cereal crops
worldwide (Dean et al. 2012; Chen et al. 2019). Our work eluci-
dates their distinct regulatory mechanisms and uncovers a syn-
ergistic interplay between H3K36me3 and H3K27me3 that

is critical for controlling fungal secondary metabolism and
virulence.

Results

Distribution and phylogenetic analysis of SET domain

proteins in fungi

To understand the diversity of SET domain proteins in fungal evo-
lution, we performed domain-based functional annotations for all
23.64 million proteins from 1038 publicly available fungal ge-
nomes across nine phyla. This analysis identified 18,718 SET
domain-containing proteins (PF00856) (Supplemental Table S1),
averaging 18 per species but varying widely across phyla. A signifi-
cant positive correlation (R=0.52, P<2.2 ×10−16) was found
between total genes and SET domain abundance (Fig. 1A), suggest-
ing a link between this family’s evolution and genome expansion.
We further performed a CLANS cluster analysis of these 18,718
proteins based on sequence similarity (Supplemental Fig. S1A), di-
viding them into three distinct clusters (Fig. 1B). Notably, nearly
all known fungal HMTs with SET domains grouped into cluster
1, indicating evolutionary conservation (Fig. 1B,C; Supplemental
Tables S2, S3). Given the critical role of HMTs in gene regulation,
we focused on cluster 1 for further in-depth analysis. Phylogenetic
analysis showed cluster 1 proteins formed distinct branches corre-
sponding to different methylation types: Set1 (H3K4), Kmt1
(H3K9), Kmt6 (H3K27), and Kmt5 (H4K20). However, the SET2
family, responsible for H3K36 methylation, was divided into two
subfamilies: Set2 and Ash1.

The distribution analysis revealed that these keyHMTs are rel-
atively conserved across fungi. However, the Kmt6 family and
Ash1 subfamily appear to be less conserved (Fig. 1D), being absent
in 417 and 382 species, respectively (Supplemental Fig. S1B).
Approximately 36.8% of species lack Ash1 subfamily members,
prompting an investigation into the evolutionary relationship be-
tween Set2 andAsh1. A phylogenetic tree showedboth subfamilies
forming distinct branches (Supplemental Fig. S1C), suggesting in-
dependent evolution and functional divergence. Additionally, we
observed copy number variations for Set2 (≥2 copies in 108 of
1038 genomes) and Ash1 (≥2 copies in 35 of 1038 genomes)
(Supplemental Fig. S1D,E). These results indicated that species-
specific deletion or duplication events drive Set2 family variation.
In summary, fungal SET domain protein numbers correlate with
genome size, and fungal HMTs, particularly the Set2 family, exhib-
it extensive copy number variations. Next, we will use F. graminea-
rum as a model to explore the biological functions of HMT
candidates in cluster 1.

Cluster 1 SET domain proteins regulate histone methylation

and pathogenicity in F. graminearum

F. graminearum harbors 19 SET domain proteins, with seven in
cluster 1, 10 in cluster 2, and two in cluster 3 (Supplemental
Table S4). To investigate the functions of these seven HMT candi-
dates, we constructed deletionmutants for each gene and analyzed
their roles in histone methylation and biological phenotypes. All
mutants, except Δset3, exhibited significant hyphal growth defects
on complete medium compared to wild-type PH-1 (Fig. 2A,B).
Notably, Δash1 showed a particularly severe growth reduction,
with only 5% of the wild-type relative growth rate. Next, we per-
formedwestern blotting assayswith site-specific antibodies for his-
tone methylation to detect the impact of each mutant on histone
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methylation levels. Consistent with previous studies, Set1, Kmt1,
Kmt6, and Kmt5 are responsible for H3K4, H3K9, H3K27, and
H4K20 methylation, respectively, in fungi (Connolly et al. 2013;
Liu et al. 2015; Bachleitner et al. 2021). Deletion of these genes
resulted in complete loss or significant reduction of correspond-
ing histone methylation levels in F. graminearum (Fig. 2C,D).
Notably, H3K36me3 levels were significantly reduced in both
Δset2 and Δash1 mutants, indicating that Set2 and Ash1 function
as H3K36 methyltransferases in F. graminearum. In contrast, the
Δset3 mutant shows no changes in tested histone methylation
levels.

Mutant pathogenicity was evaluated by point-inoculating co-
nidial suspensions into flowering wheat heads and placing myce-
lial plugs onwheat seedling stems. In wheat heads, wild-type PH-1
inoculation resulted in scab symptoms developing on inoculated
spikelets and rapidly spreading to neighboring spikelets. Fifteen
days postinoculation, wild-type PH-1 caused severe, typical scab
symptoms (Fig. 2E). In contrast, all mutants, except Δset3, showed
significantly reduced virulence. The Δset1, Δkmt6, and Δash1 mu-
tants were nonpathogenic, whereas the Δset2 mutant exhibited

scab symptoms restricted to the inoculated spikelets without ra-
chis spread (Fig. 2E). The Δkmt1 and Δkmt5 mutants infected the
inoculated spikelets and spread to neighboring spikelets, but their
virulence was significantly reduced compared to the wild type.
Additionally, these mutants demonstrated attenuated virulence
on wheat seedlings (Fig. 2F). Collectively, six of seven SET domain
proteins in cluster 1 regulate histone methylation, growth, and
pathogenicity in F. graminearum. Given that the roles of Set1,
Kmt1, Kmt6, and Kmt5 are already characterized, we will specifi-
cally focus on Set2 andAsh1 to investigate their distinct or overlap-
ping contributions in regulating H3K36 methylation, gene
expression, and biological functions.

Distinct roles of Set2 and Ash1 in H3K36 methylation,

development, virulence, and stress response in F. graminearum

To determine if F. graminearum Set2 and Ash1 possess H3K36
methyltransferase activity, we heterologously expressed and puri-
fied them in Escherichia coli for in vitro enzyme assays. A recombi-
nant H3K36 peptide, devoid of pre-existing histonemodifications,
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Figure 1. Distribution and phylogeny of SET domain proteins across fungi kingdom. (A) Correlation between SET domain protein number and total gene
count in fungal genomes. Pearson correlation coefficient: R = 0.52, P<2.2 × 10−16. (B) Cluster analysis of 18,718 SET domain proteins from 1038 fungal
species. Thirty groups within three clusters are shown by distinct colors and shapes. (C) Phylogenetic tree of cluster 1 SET domain proteins, highlighting
histone methyltransferase (HMT) clades. Scale bar = 1. (D) Distribution of key HMT families (Set1, Kmt1, Kmt5, Kmt6) and subfamilies (Set2, Ash1) across
seven fungal phyla. Average copy number per class is shown.
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served as the substrate, with S-adenosylmethionine (SAM) as the
methyl donor. Western blotting and LC–MS/MS analyses evaluat-
ed the reaction products’ methylation status. Western blotting re-
vealed specific H3K36me2 and H3K36me3 signals when probed
with corresponding antibodies (Fig. 3A). LC–MS/MS analysis fur-
ther showed mass shifts of 28.03 Da and 42.05 Da at the H3K36
residue, consistent with di- and trimethylation (Supplemental
Fig. S2; Supplemental Table S5). These findings confirm that
both Set2 and Ash1 possess in vitro H3K36 methyltransferase ac-
tivity. We then assessed the in vivo H3K36 methyltransferase ac-
tivity of Set2 and Ash1 and explored their roles in various
biological processes. Localization analyses with GFP-tagged Set2
andAsh1 demonstrated nuclear localization inmycelia, confirmed
by colocalization with H1-mCherry (Supplemental Fig. S3). We
then evaluated relative H3K36me2 and H3K36me3 levels via west-
ern blotting, using specific antibodies, in single (Δset2, Δash1),
double (Δset2/ash1), and H3K36A (H3K36 substituted with ala-
nine) mutants. As shown in Figure 3, B and C, SET2 mutation sig-

nificantly reduced global H3K36me3 levels to ∼10% of wild-type,
whereas ∼80% H3K36me3 was retained in Δash1. In both single
mutants, global H3K36me2 levels decreased to ∼45% of PH-1.
Importantly, H3K36me2 and H3K36me3 levels were completely
abolished in both the Δset2/ash1 and H3K36A mutants (Fig. 3B,
C). These findings suggest that Set2 andAsh1 redundantly contrib-
ute to full H3K36me2/3 activity in F. graminearum, with Set2 play-
ing a more dominant role in regulating H3K36me3.

We next assessed fungal development, pathogenicity, and
stress tolerance in these deletionmutants and their complemented
strains. All mutants exhibited significant growth defects on both
tested media compared to PH-1, with Δash1 displaying the most
severe reduction (only 5% of the growth rate of PH-1). Notably,
Δset2/ash1 partially restored its growth rate compared to Δash1
(Fig. 3D,E). Additionally, conidiation was significantly reduced
across all mutants (Fig. 3F). Pathogenicity was evaluated by
point-inoculating conidial suspensions onto flowering wheat
heads (Fig. 3G). Fifteen days postinoculation, scab symptoms
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caused by Δset2 and Δset2/ash1were restricted to inoculated spike-
lets, whereas Δash1was entirely nonpathogenic. In contrast, PH-1
and the complemented mutants induced severe scab symptoms
across the wheat heads (Fig. 3G). Deoxynivalenol (DON), a critical
virulence factor, is essential for fungal spreadwithin a spike. Given
the mutants’ restricted spread or complete loss of pathogenicity,
we quantified DON production. Cultivation in trichothecene bio-
synthesis induction (TBI) medium for 3 days revealed that all mu-

tants produced significantly lowerDONamounts compared to PH-
1 and complemented strains (Fig. 3H). To further confirm, we in-
vestigated DON-toxisome formation using GFP-tagged Tri1 (Tri1-
GFP) as a marker in TBI medium. As shown in Figure 3I, no toxi-
somes were detected in either Δset2 or Δash1, whereas they were
clearly visible in PH-1. The H3K36A mutant mirrored Δset2/ash1
phenotypes, including defects in growth, conidiation, virulence,
and DON biosynthesis.
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to 100%. (n.d.) not detectable. Different letters indicate significant differences among all groups shown. (D) Colony diameters of PH-1 and mutant strains
after 3 days on PDA and CM. Different letters indicate statistically significant differences among all tested groups. Representative colony morphologies are
shown in E. (F ) Conidial production of strains grown in carboxymethyl cellulose (CMC) liquid medium for 5 days. Different letters indicate statistically sig-
nificant differences among strains. (G) Virulence of PH-1 and mutants on wheat heads after point-inoculated with conidia, photographed at 15 dpi. (H)
Deoxynivalenol (DON) production by PH-1 andmutants after 7 days in trichothecene biosynthesis-inducing (TBI) medium. Different letters indicate statisti-
cally significant differences among strains. (I) DON toxisome formation in PH-1, Δset2, and Δash1 visualized by Tri1-GFP after 36 or 48 h in TBI medium.
Scale bar, 5 µm. (J) Heat map showing sensitivity of PH-1 and mutants to various abiotic stresses. Growth inhibition of PH-1 under each condition was
normalized to 1.0. Data are mean± standard deviation (n=3). For panels C, D, F, and H, data are presented as mean ± standard deviation (s.d.) from three
independent experiments. Statistical analysis was performed using ANOVA with Tukey’s multiple comparisons test (P<0.05).
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Subsequently, we evaluated the sensitivity of all mutants to
various abiotic stresses (Fig. 3J; Supplemental Fig. S4). Compared
to PH-1, Δash1 and Δset2 exhibited increased sensitivity to osmotic
stress agents KCl and NaCl and to the cell membrane stress agent
sodium dodecyl sulfate (SDS). However, these single deletion
mutants showed significantly increased tolerance to oxidative
stress induced by hydrogen peroxide (H2O2) and vitamin K3.
Moreover, Δset2 displayed heightened sensitivity to the fungicide
tebuconazole but increased tolerance to the ionic stress agent
CaCl2. In contrast, Δash1 exhibited an opposite pattern of sensitiv-
ity to tebuconazole and CaCl2 relative to Δset2. Both Δash1/set2
and the H3K36Amutant showed increased sensitivity to all tested
stress agents. Taken together, these findings indicate that Set2 and
Ash1 have both overlapping and distinct functions in regulating
fungal development, virulence, secondary metabolism, and re-
sponse to diverse abiotic stresses.

Distinct contributions of Ash1 and Set2 to H3K36me3

To investigate the roles of Ash1 and Set2 in H3K36me3 and tran-
scriptional regulation, we performed chromatin immunoprecipi-

tation sequencing (ChIP-seq) to profile H3K36me3 distribution
in PH-1, Δset2, and Δash1 strains. In PH-1, we identified 8390 sig-
nificant H3K36me3 peaks. In contrast, Δset2 had 2366 peaks,
whereas Δash1 showed 4610 peaks. Over 85% of peaks in bothmu-
tants overlappedwith PH-1 (Fig. 4A), indicating substantial yet dis-
tinct contributions from the two enzymes. Δset2 showed increased
H3K36me3 enrichment at transcriptional start sites (TSSs) but re-
duced methylation across gene bodies. Conversely, Δash1 dis-
played diminished H3K36me3 at TSSs, with other genomic
regions largely unaffected. These observations suggest that Set2
primarily deposits H3K36me3 within gene bodies, whereas Ash1
preferentially targets TSS regions (Fig. 4B,C).

Integrative Genomics Viewer (IGV) (Thorvaldsdóttir et al.
2013) tracks showed H3K36me3 in PH-1 is broadly distributed
across all four chromosomes, with notable absence in centromeric
regions (Fig. 4D). Δset2 and Δash1mutants displayed distinct,mutu-
ally exclusive H3K36me3 patterns, collectively recapitulating the
wild-typeH3K36me3 landscape. Specifically, H3K36me3wasmain-
ly enriched in telomeric and centromere-proximal regions in Δset2,
whereas Δash1 showed H3K36me3 enrichment in euchromatic re-
gions. To explore the functional significance of these patterns, we
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examined the relationship between H3K36me3 distribution and
mRNA expression in PH-1 (Fig. 4D). Ash1-mediated H3K36me3
was enriched in genes with low or no expression, whereas Set2-me-
diated H3K36me3was found in highly expressed genes. These find-
ings suggest that Ash1 and Set2 contribute differently toH3K36me3
deposition, with Ash1 primarily in facultative heterochromatin re-
gions and Set2 in transcriptionally active euchromatin.

Set2 and Ash1 differentially regulate H3K36me3-marked gene

expression

To elucidate the regulatory functions of Set2- and Ash1-mediated
H3K36me3, we integrated ChIP-seq with RNA-seq to correlate
H3K36me3 enrichment and gene expression.We first identified ge-
nomic regions with significantly reduced H3K36me3 occupancy in
Δset2 and Δash1mutants. In Δset2, 5025 H3K36me3 peaks associat-
ed with 5680 genes were significantly diminished, whereas Δash1
showed 3810 peaks linked to 3813 genes with reduced H3K36me3
(Fig. 5A). Notably, in Δset2, 60.3% of reduced H3K36me3 signals
were confined to genebodies, whereas inΔash1, reductionsoccurred
in both promoters (42.7%) and gene bodies (49.6%) (Supplemental
Fig. S5A). We then performed RNA-seq on PH-1, Δset2, Δash1, and
Δset2/ash1 under the same ChIP-seq conditions. Principal compo-
nent analysis (PCA) revealed distinct transcriptomic profiles for
Δset2 and Δash1 compared to PH-1, with the doublemutant cluster-
ing closer to Δset2 (Fig. 5B). Compared to PH-1, Δset2 exhibited 1002
differentially expressed genes (DEGs),with 604 upregulated and 398
downregulated (Supplemental Fig. S5B). In contrast, Δash1 exhibit-
ed amore pronounced transcriptional effect, with 3317DEGs (1893
upregulated and 1424 downregulated (Supplemental Fig. S5C). At
the genomic scale, H3K36me3-marked genes in PH-1 did not differ
significantly in expression from nonmarked genes (P=0.062) (Fig.
5C). However, in the Δset2 and Δash1, H3K36me3-marked genes
were downregulated in Δset2 but upregulated in Δash1, suggesting
opposing regulatory roles for Set2 and Ash1 in gene expression
(Fig. 5C). Beyond its role in gene regulation, Set2-mediated
H3K36me3 suppresses cryptic transcription in other eukaryotes
(Carrozza et al. 2005; Kim et al. 2016; DiFiore et al. 2020; Lee et al.
2021). To determine whether this function is conserved in F. grami-
nearum, we analyzed read distributions across ORF regions to detect
aberrant transcription initiation within gene bodies. Compared to
PH-1, cryptic transcription emerged at 67 genes in Δset2, all
marked by Set2-dependent H3K36me3 across their gene bodies
(Supplemental Fig. S6; Supplemental Table S6). These findings indi-
cate Set2-mediated H3K36me3 contributes to both transcriptional
regulation and cryptic transcription suppression in F. graminearum.

To further elucidate the regulatory interplay of Set2- and
Ash1-mediated H3K36me3 and their impact on gene expression,
we investigated the relationship between H3K36me3-enriched
genes and DEGs in Δash1 and Δset2. Our results showed a substan-
tial overlap, with 46.2% (184/398) of downregulated genes in Δset2
linked to Set2-dependent H3K36me3, and 46.1% (872/1893) of
upregulated genes in Δash1 linked to Ash1-mediated H3K36me3
(Fig. 5D). These overlapping genes were defined as direct targets
of Set2 or Ash1. Gene Ontology (GO) analysis revealed that Set2-
regulated genes were enriched in pathways related to metal ion
transport, putrescine and β-alanine biosynthesis, and RNA poly-
merase II transcription (Fig. 5E). Ash1-regulated genes were en-
riched in proteolysis, siRNA processing, and secondary
metabolite biosynthesis (Fig. 5F).

To validate these roles, we selected two candidate genes from
each Set2- and Ash1-regulated sets and constructed corresponding

deletion mutants for phenotypic assessment. For Set2, we selected
LEU1 (FGSG_09589), encoding isopropyl malate isomerase, and
STF (FGSG_00404), a sexual-specific transcription factor. Both
genes showed reduced H3K36me3 in their coding regions and de-
creased transcript levels in Δset2 (Fig. 5G,J). Phenotypic analysis re-
vealed Δleu1 exhibited significantly impaired growth on solid and
liquid FGA medium without leucine supplementation (Fig. 5H,I),
and Δstf exhibited defective perithecium formation (Fig. 5K).
Notably, Δset2 exhibited partial phenotypes resembling Δleu1
and Δstf, suggesting Set2 regulates leucine biosynthesis and sexual
development. For Ash1, we selected NRPS7, involved in fusarista-
tin A biosynthesis, and CHSA (FGSG_02354), encoding chitinase.
Both genes showed reduced H3K36me3 at their promoter and/or
coding regions, with elevated expression in Δash1 (Fig. 5L,N). As
expected, fusaristatin A production increased in Δash1 compared
to PH-1 (Fig. 5M). In addition, CHSA overexpression led to in-
creased sensitivity to cell wall stress, paralleling Δash1 (Fig. 5O,
P). Collectively, these results indicate that Set2 and Ash1 play dis-
tinct roles in the transcriptional landscape of H3K36me3-marked
genes in F. graminearum, with Set2 associated with actively tran-
scribed genes and Ash1 enriched at loci with lower transcriptional
activity.

Ash1 activity modulates H3K27me3 accumulation

Previous studies have shown that H3K27me3 is deposited by
Kmt6, the catalytic subunit of PRC2, marking facultative
heterochromatin and mediating transcriptional repression in
F. graminearum (Connolly et al. 2013; Tang et al. 2021). Notably,
Ash1-catalyzed H3K36me3 is also enriched in facultative hetero-
chromatin and implicated in transcriptional repression, partially
overlapping in genomic distribution with H3K27me3 (Fig.
6A). In Δash1, we observed a substantial global reduction in
H3K27me3, whereas no decrease was detected in Δset2 (Fig. 6B).
ChIP-seq further confirmed this, revealing significantly reduced
H3K27me3 occupancy in Δash1 compared to PH-1 (Fig. 6C).
Theseobservations suggest functional cross-talkbetweenAsh1-me-
diated H3K36me3 and H3K27me3 in gene expression regulation.

Approximately 70% (1092/1566) of H3K27me3-enriched
genes were also co-occupied by Ash1-mediated H3K36me3 (Fig.
6D). GO analysis revealed these comarked genes were predomi-
nantly enriched in transport and secondary metabolism (Fig.
6E). To assess whether Ash1 influences H3K27me3 deposition,
we analyzed H3K27me3 ChIP-seq profiles in Δash1. Loss of ASH1
led to increasedH3K27me3 occupancy at 63 genes, with 17 having
reduced transcript levels (Fig. 6F). Conversely, 77 genes showedde-
creased H3K27me3 enrichment, with 42 displaying transcription-
al upregulation (Fig. 6G). For instance, MFS1 (FGSG_03725) and
LPP1 (FGSG_03120), which gained H3K27me3 in Δash1, showed
reduced expression, indicating Ash1-dependent H3K36me3 may
promote repression by facilitating H3K27me3 accumulation (Fig.
6H). In contrast, two cytochrome P450 genes that lost both
H3K36me3 andH3K27me3 in Δash1 showed increased expression,
indicating transcriptional derepression (Fig. 6I). Together, these
findings suggest that Ash1-mediated H3K36me3 exerts dual roles
in modulating H3K27me3 dynamics, enabling both repression
and activation of comarked genes in F. graminearum.

H3K36me3 coordinates with H3K27me3 in secondary

metabolism regulation

Secondary metabolite (SM) gene clusters, including polyketide
synthases (PKSs), nonribosomal peptide synthases (NRPSs),
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terpene synthases (TPSs), and cytochrome P450s, are predomi-
nantly located in telomeric and pericentromeric regions of the F.
graminearum genome. Previous studies show that Kmt6 represses

SM gene expression through H3K27me3 deposition (Tang et al.
2021; Atanasoff-Kardjalieff and Studt 2022). Loss of H3K27me3
in Δkmt6 derepressed genes involved in SM biosynthesis. Given
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H3K36me3 enrichment in telomeric and pericentromeric regions
and Ash1’s role in modulating H3K27me3 deposition, we investi-
gated whether H3K36me3 contributes to SM regulation in F.
graminearum.

Heat map analysis revealed that primarymetabolism gene ex-
pression remained largely unaffected in Δash1, Δset2, and Δset2/
ash1, consistent with patterns in Δkmt6 (Fig. 7A). In contrast, SM
genes exhibited greater transcriptional variability, particularly in
Δash1, where 35.8% (245/683) of SM genes were differentially ex-
pressed. A similar trend was observed in Δkmt6, which showed dif-
ferential expression of 59.5% (407/683) SM genes (Fig. 7B).
Notably, 130 SM genes were upregulated in both Δash1 and
Δkmt6 (Fig. 7C). Furthermore, 85% of SM genes upregulated in
Δash1were restored to wild-type expression in Δset2/ash1, suggest-

ing Set2 also participates in their regulation (Fig. 7B,C). Further
analysis identified 62 key SM genes, including PKSs, NRPSs,
TPSs, and cytochrome P450s, marked by H3K36me3 in PH-1 and
showing significant changes in the single or double mutants
(Fig. 7D). Among these, 34 genes were comarked by H3K36me3
and H3K27me3 and showed elevated expression in Δash1
(Fig. 7D). ChIP-seq showed a substantial reduction in both
H3K36me3 and H3K27me3 at the promoters and gene bodies of
derepressed genes in Δash1, with H3K36me3 levels nearly abol-
ished at promoters (Fig. 7E).

To further elucidate Ash1’s effects on SM gene regulation, we
analyzed the aurofusarin biosynthetic gene cluster as an example
(Fig. 7F). All 13 genes in this cluster were upregulated in Δash1, co-
inciding with reductions of H3K36me3 and H3K27me3 at their
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promoters (Fig. 7F). This trendwas further validated byChIP-qPCR
and RT-qPCR for two representative genes—AUR1, encoding the
transcription factor, and PKS12, encoding polyketide synthase.
Both genes exhibited decreased promoter enrichment of

H3K36me3 and H3K27me3, with increased transcript levels (Fig.
7G–I). Notably, H3K36me3 enrichment across the gene bodies of
several cluster genes, including AUR4, PKS12, AUR8, and AUR9,
was not altered in Δash1 (Fig. 7F). Elevated expression of the
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aurofusarin biosynthesis cluster in Δash1 led to increased pigment
accumulation on CM plates and in liquid cultures (Fig. 7J,K).
Additionally, AUR1 overexpression under a constitutive tubulin
promoter (∼25-fold increase) enhanced pigment production but
reduced vegetative growth by ∼70% compared to PH-1 (Fig. 7J,
L). Subsequent experiments revealed that purified aurofusarin sig-
nificantly suppressed mycelial growth, conidiation, and conidial
germination in PH-1 (Supplemental Fig. S7). These suggest that
the growth defects in Δash1 are partially due to increased aurofu-
sarin production. To test this, we generated a Δash1/aur1 double
mutant, which partially rescued the growth defects in Δash1 (Fig.
7L). These findings show that Ash1-mediated H3K36me3 and
Kmt6-mediated H3K27me3 cooperatively repress SM gene expres-
sion via promoter occupancy and that growth defects in Δash1 are
partially due to overproduction of toxic SMs, such as aurofusarin.

As observed, Δash1 exhibited phenotypic instability, produc-
ing fast-growing sectors after 2 weeks of incubation. Whole-
genome resequencing of two suppressor mutants identified frame-
shift mutations in CTK1 (FGSG_16718) and SET2 (FGSG_05558)
(Fig. 7M,N). Previous studies show that Ctk1, a cyclin-dependent
kinase, phosphorylates the C-terminal domain (CTD) of RNA
polymerase II (RNAPII) at serine 2 (Ahn et al. 2004; Röther and
Sträßer 2007), facilitating Set2 recruitment and H3K36me3 depo-
sition during transcription elongation (Youdell et al. 2008; Dro-
namraju and Strahl 2014). We hypothesize that frameshift
mutations in Ctk1 and Set2 impair transcription elongation, par-
ticularly in SM genes, which partially alleviates the growth defects
in Δash1. Consistent with this, transcript levels of representative
SM genes were reduced in both Δash1/ctk1 and Δash1/set2 com-
pared to Δash1 (Fig. 7O). Moreover, the growth rates of these dou-
ble mutants were faster than Δash1 and comparable to the
suppressor strains (Fig. 7M).

In conclusion, these findings highlight the cooperative roles
of H3K36me3 and H3K27me3 in regulating SM gene expression.
In PH-1, SM gene promoter regions are co-occupied by Ash1-cata-
lyzed H3K36me3 and PRC2-catalyzed H3K27me3, maintaining
transcriptional repression. Deletion of ASH1 results in a near-com-
plete loss of H3K36me3 at SM gene promoters, with a marked re-
duction in H3K27me3 enrichment. This epigenetic disruption

relieves repression, leading to SM gene activation. Set2 catalyzes
H3K36me3 in the SM gene coding regions, playing a key role in
elongation. This process is facilitated by Ctk1 kinase, which
phosphorylates Ser2 residues in RNAPII’s CTD, transitioning RNA-
PII into a highly phosphorylated state. Phosphorylated Ser2 en-
ables Set2 recruitment to coding regions, where it catalyzes
H3K36me3, ensuring efficient transcription elongation. Impor-
tantly, H3K36me3 levels in SM gene coding regions remain robust
in Δash1, highlighting its critical role in sustaining transcription
elongation of SM genes (Fig. 8).

Discussion

The SET domain is a conserved catalytic domain in HMTs, studied
across diverse species (Veerappan et al. 2008; Herz et al. 2013).
Previous evolutionary analyses, using limited genomic data sets,
suggest SET domain proteins undergo dynamic processes, includ-
ing gene loss, duplication, and functional diversification (Zhang
and Ma 2012; Zhu et al. 2013). Here, we extend these findings
by analyzing 18,718 SET domain proteins from 1038 fungal spe-
cies, providing a comprehensive survey across the fungal kingdom.
A positive correlation between SET domain proteins and genome
size suggests adaptive expansion during fungal evolution. Most
fungal HMTs clustered into conserved groups, with Set2 and
Ash1 showing distinct evolutionary paths. Set2 proteins are con-
served across nearly all analyzed species, whereas Ash1 homologs
are absent in a third of species, suggesting lineage-specific loss or
functional replacement. Phylogenetic analyses suggest early diver-
gence of Set2 and Ash1, highlighting their nonredundant roles.
Functional studies in F. graminearum confirm that Set2 and Ash1
mediate H3K36me3 at distinct loci, with Set2 acting in euchroma-
tin linked to active genes and Ash1 depositing it in heterochroma-
tin to repress transcription. These findings highlight the
complementary, nonredundant functions of Set2 and Ash1 in
chromatin and gene expression. Moreover, our analysis revealed
that the absence of Kmt6 in 417 species, except Ash1, suggests a
shared evolutionary history among HMTs associated with hetero-
chromatic silencing, highlighting the precision of histonemethyl-
ation in gene regulation. In fungi lacking both Ash1 and Kmt6,
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alternative silencing strategies likely compensate for the absence of
classical methylation marks. For instance, short double-stranded
RNAs induce RNA silencing through distinct mechanisms
(Meister and Tuschl 2004). Telomere-associated factors such as
DNA helicase Dna2p, telomerase Dot1, and ubiquitinase Dot4p
may also contribute to gene silencing (van Leeuwen et al. 2002;
Gardner et al. 2005).

H3K36me3 is a cotranscriptional modification that facili-
tates transcription elongation and is implicated in repression
(Wagner and Carpenter 2012). With increasing functional char-
acterization across fungal species, evidence suggests that
H3K36me3’s regulatory role varies across distinct chromatin con-
texts (Suzuki et al. 2016; Bicocca et al. 2018). Beyond its con-
served role in cotranscriptional histone modification, where
Set2 associates with elongating RNAPII to deposit H3K36me2/3
along coding regions, several studies have uncovered additional
functions of Set2. Loss of SET2 in Saccharomyces cerevisiae leads
to increased histone exchange and H3K56ac accumulation with-
in gene bodies, facilitating aberrant transcriptional activation
(Venkatesh et al. 2012). Set2-mediated H3K36 methylation is crit-
ical for proper pre-mRNA splicing, and its absence impairs splice
site recognition, leading to unstable transcripts or pre-mRNA deg-
radation, reducing transcriptional levels (Li et al. 2016;
Bhattacharya et al. 2021). In F. graminearum, H3K36me3-mediat-
ed regulation is context-dependent and governed by two distinct
HMTs: Set2 and Ash1. Set2 functions in euchromatin to sustain
transcription, whereas Ash1 operates in heterochromatin to me-
diate silencing. H3K36me3 levels were reduced across gene bodies
in Δset2, while promoter enrichment increased. Conversely,
Δash1 retained H3K36me3 in the gene body but showed reduced
enrichment at promoters. These patterns highlight the distinct
activities of Set2 and Ash1, with Set2 in coding regions and
Ash1 at promoters. Beyond gene expression regulation, Set2-me-
diated H3K36me3 suppresses cryptic transcription initiation and
restores chromatin compaction after RNA polymerase II passes
(Carrozza et al. 2005; Kim et al. 2016). Consistent with this, com-
pared to PH-1, we identified 67 genes with cryptic transcription
in Δset2. These findings suggest that Set2-mediated H3K36me3
is critical for transcriptional fidelity by preventing cryptic tran-
scription in gene bodies, likely conserved across fungi and other
eukaryotes.

Previous studies show thatH3K27me3 andH3K36me3 aremu-
tually exclusive on the same histone H3 and rarely co-occur across
the genome (Schmitges et al. 2011; Alabert et al. 2020). However,
we found that a significant portion of Ash1-marked chromatin dis-
played H3K27me3. In F. graminearum, loss of Ash1-dependent
H3K36 methylation was linked to both decreases and increases in
H3K27me3, suggesting complex interplay between these modifica-
tions. Notably, loss ofASH1 led to increasedH3K27me3 at 63 genes;
however, only 17 exhibited reduced transcript levels. This limited
transcriptional response is likely due to the chromatin context of
Ash1-regulated genes, which are in heterochromatic regions where
expression is low or silent. Transcriptomic analysis further support-
ed this, showing that, of 63 Ash1-regulated genes with increased
H3K27me3 in Δash1, 17 were downregulated, 28 were silent in
PH-1, and 18 showed no significant change (Supplemental Table
S7). These findings suggest that the repressive effect of the newly
deposited H3K27me3 in Δash1 is similar to the repression conferred
by H3K36me3 at these loci. In addition to the interplay between
H3K36me3 and H3K27me3, we observed altered levels of
H4K20me3 in Δash1 (Fig. 2C,D), suggesting a functional connec-
tion between Ash1-mediated H3K36me3 and H4K20me3 in F. gra-

minearum. To investigate this, we performed genome-wide
profiling of H4K20me3 by ChIP-seq in both PH-1 and Δash1. Our
analysis revealed that H4K20me3 is distributed across the F. grami-
nearum genome (Supplemental Fig. S8A). Comparative analysis
identified 874 significantly upregulated peaks and 1003 signifi-
cantly downregulated peaks in Δash1 (Supplemental Fig. S8B,C).
The upregulated peaks were enriched in euchromatic regions,
whereas the downregulated peaks were in facultative heterochro-
matin, showing a pattern similar to Zymoseptoria tritici (Möller
et al. 2023). The regulatory relationships among H3K36me3,
H3K27me3, and H4K20me3 warrant further investigation to eluci-
date their roles in chromatin-based gene regulation.

Set2 and Ash1 play essential, distinct roles in chromatin-based
regulation affecting fungal growth, virulence, and secondarymetab-
olism (Gu et al. 2017; Bicocca et al. 2018; Janevska et al. 2018;
Zhuang et al. 2022; Xu et al. 2023). In F. graminearum, Δash1 exhib-
ited a severe growth defect, with its growth rate reduced by ∼90%, a
phenotype more drastic than in other fungi (Janevska et al. 2018;
Zhuang et al. 2022; Xu et al. 2023). Notably, this severe growth
defect was partially rescued inΔset2/ash1, suggesting a genetic inter-
action between Set2 and Ash1. This partial rescuemay be due to the
overexpression of genes typically silenced in PH-1 after ASH1 dele-
tion. Supporting this, overexpression of AUR1 impaired mycelial
growth,whereas deletingAUR1 inΔash1partially rescued the defect.
Deletion of both SET2 and ASH1 reduced virulence in F. graminea-
rum, consistent with previous findings in other pathogenic fungi
(Gu et al. 2017; Janevska et al. 2018; Xu et al. 2023). Fungal SMs
are smallmolecules with diverse functions and applications inmed-
icine, agriculture, and industry. Their biosynthesis is controlled by
coexpressed genes in gene clusters. Most SM gene clusters remain si-
lent due to tight regulation under laboratory conditions (Brakhage
2013). Environmental cues, chromatin accessibility, and histone
modifications regulate the activation of these gene clusters
(Brakhage 2013; Collemare and Seidl 2019). Efforts to activate silent
SM gene clusters in fungi have primarily focused on histone acety-
lation and methylation (Yu and Keller 2005; Atanasoff-Kardjalieff
and Studt 2022). Acetylation marks like H3K9ac and H3K27ac and
H3K4methylation are enriched at promoters of actively transcribed
SM genes, promoting RNA polymerase II recruitment and transcrip-
tion initiation (Liu et al. 2015). H3K27 methylation, deposited by
PRC2, represses SM clusters in facultative heterochromatin under
noninducing conditions (Connolly et al. 2013). Whereas these
modifications are well characterized, the role of H3K36me3 in regu-
lating SM gene expression is less understood but gaining attention
due to its emerging significance. Deletion of SET2 in F. verticillioides
caused defects in FB1 mycotoxin biosynthesis and pigmentation
(Gu et al. 2017). In F. fujikuroi, deletion of SET2 and ASH1 reduced
gibberellin production but elevated fusarins and fusaric acid level.
ASH1 deletion reduced bikaverin production while increasing fusar-
ubin levels (Janevska et al. 2018). Our findings reveal distinct, com-
plementary roles for Set2 and Ash1 in regulating SM gene
expression in F. graminearum. Ash1-mediated H3K36me3 cooper-
ates with PRC2-dependent H3K27me3 at SM gene promoters to
repress SM gene transcription. Deletion of ASH1 disrupts this bal-
ance, reducing H3K27me3 occupancy and activating SM gene clus-
ters. Set2-mediated H3K36me3, enriched in SM gene bodies,
facilitates transcriptional elongation and proper SM gene expres-
sion. These findings emphasize the complexity of chromatin-based
regulation of SM. A deeper understanding of histone modifications
like H3K36me3 and their interactions with other chromatin regula-
tors will be critical for elucidating and harnessing fungal SM
biosynthesis.
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Methods

Identification of SET domain proteins in fungi

To systematically identify SET domain proteins across fungi, a total
of 23.64 million protein sequences were retrieved from 1038
fungal genomes spanning nine phyla, all obtained from the
NCBI database. Domain annotations were performed using Pfam
(PF00856), SMART (SM000317), and InterPro (IPR001214).
Proteins containing at least one SET domain were retained, result-
ing in the identification of 18,718 SET domain proteins. To inves-
tigate subfamily relationships, the identified sequences were
clustered with CLANS v2.0 (https://github.com/inbalpaz/
CLANS), a Python-based tool for sequence-similarity network
analysis, executed in non-GUI mode with the “-nogui” flag.

Phylogenetic analysis of SET domain proteins in fungi

Phylogenetic reconstruction was performed for cluster 1, which
contained 6640 sequences grouped into 11 groups. Multiple se-
quence alignments were generated with MAFFT v7.475 (Katoh
and Standley 2013), and poorly aligned regions were removed us-
ing trimAl v1.4.1 (Capella-Gutiérrez et al. 2009) with the “gappy-
out” setting. A maximum-likelihood tree was inferred with
FastTree v2.1 (Poon et al. 2010). The reference species tree for the
1038 fungal genomes was obtained from a previous study (Li
et al. 2021), which established phylogenetic relationships using
290 single-copy BUSCO genes. To assess the distribution of major
SET domain subfamilies, the average copy number of SET domain
proteins was calculated across 42 fungal classes spanning seven
phyla (each represented bymore than one species). The groups ex-
amined included group03-H3K9, group04-H3K4, group06-Set2
(H3K36), group15-Ash1 (H3K36), group07-H4K20, and group14-
H3K27.

Strain construction

The wild-type F. graminearum strain PH-1 (NRRL 31084) served
as the parental strain for transformants generated in this study.
All gene deletions, complementations, and H3K36A point muta-
tion were generated using the double-joint PCR method (Supple-
mental Fig. S9A–C), and the resulting DNA fragments were
introduced into protoplasts via polyethylene glycol (PEG)-mediat-
ed transformation as described previously (Yun et al. 2014). Trans-
formants were selected on hygromycin (100 µg/mL) or neomycin
(100 µg/mL), depending on the resistance cassette used, and veri-
fied by PCR or sequencing (Supplemental Fig. S9D–G). Primers
used in this study are listed in Supplemental Table S8. Indel pro-
files of Δset2, Δash1, Δset2/ash1, complemented strains, and the
H3K36A mutant were confirmed by whole-genome sequencing
(WGS) (Supplemental Fig. S9H; Supplemental Table S9). For gene
deletions, the ORF was replaced with either the hygromycin B
phosphotransferase gene (HPH) or the neomycin resistance gene
(NEO). Complementation strains of SET2 and ASH1 were generat-
ed by in situ replacement with GFP-tagged ORFs fused to flanking
regions and the NEO cassette. The PH-1::Tri1-GFP strain was con-
structed using the same strategy. Double mutants (Δset2/ash1,
Δash1/aur1, and Δash1/ctk1) were obtained by replacing the target
ORF with the NEO cassette in the Δash1 background. The H3K36A
allele was generated by substituting lysine with alanine at position
36 of HISTONE3 (FGSG_04290) and confirmed by sequencing.
Overexpression of AUR1 and CHSAwas driven by either the native
TUB promoter (FGSG_09530) or the A. nidulans GPDA promoter
(Frandsen et al. 2008), fusedwith theNEO cassette, and introduced
into the corresponding deletion strains.

Pathogenicity and DON production assays

To evaluate the pathogenicity on wheat heads, 10 µL of conidial
suspension (1×105 conidia/mL) were injected into the central spi-
kelet of individual flowering wheat heads. Each strain was tested
on 15 biological replicates. The number of infected spikelets per
head was recorded 14 days postinoculation (dpi). For wheat seed-
ling stem assays, fresh wheat stems were inoculated with mycelial
plugs, and lesion development was documented at 5 dpi. For
deoxynivalenol quantification, strains were cultured in TBI liquid
medium at 28°C in the dark with shaking at 150 rpm for 7 days.
DON was extracted and quantified using a Deoxynivalenol
(DON) ELISA kit (WS2024-011, Wise Science & Technology
Development, Jiangsu, China) according to themanufacturer’s in-
structions. DONassayswere conductedwith three independent bi-
ological replicates.

In vitro histone methyltransferase assay

In vitro HMT assays were performed as described previously
(Zhang et al. 2024a). Each 200-µL reaction contained 10 µg of syn-
thetic recombinant histone H3 peptide (PSTGGVKKPHRYKPGT),
2 µg S-adenosyl-L-methionine (Solarbio), and ∼100 µg of purified
MBP-Set2, MBP-Ash1, or MBP control protein in HMT buffer (300
mM NaCl, 50 mM Tris-HCl [pH 7.5], 5% glycerol, 1 mM DTT).
Reactions were incubated at 30°C for 20 h and terminated by add-
ing SDS-PAGE loading buffer, followed by boiling at 95°C for
5 min. Reaction products were analyzed by western blot using
anti-H3K36me3 (Abcam, #ab9050) and anti-H3K36me2 (Abcam,
#ab9049,) antibodies, and by ultraperformance liquid chromatog-
raphy-mass spectrometry (UPLC-MS) on a Waters UPLC system
(Waters Corp.). Raw MS data were processed with PEAKS Studio
X+ (Bioinformatics Solutions Inc.) and searched against the F. gra-
minearum PH-1 protein database from UniProt. Search parameters
were: parent mass tolerance, 10 ppm; fragment mass tolerance,
0.02 Da; maximum missed cleavages, 2; variable modifications,
oxidation (M), mono-, di-, and trimethylation (K), acetylation
(K, protein N-term); false discovery rate (FDR) < 1%; mini-
mum peptide score, −10lgP≥10. Label-free quantification was
performed based on extracted-ion chromatogram peak areas.
Peptide-spectrum matches and posttranslational modifications
were validated using PEAKS’ built-in FDR estimation and manual
inspection. Proteins identified with ≥2 unique peptides were con-
sidered confidently identified.

Chromatin immunoprecipitation and ChIP-seq analysis

ChIP assays were performed on PH-1, Δash1, and Δset2 strains us-
ing freshmycelia grown inCMmedium at 25°C for 24 h, following
previously described protocols (Tang et al. 2021). Briefly, 0.6 g of
mycelia was washed twice with cold PBS, crosslinked with 1%
formaldehyde at 25°C for 10min, and quenchedwith 125mMgly-
cine. Samples were lysed in buffer containing 50mMTris-HCl (pH
8.0), 10 mM EDTA, 1% SDS, and protease inhibitor cocktail.
Chromatin was extracted on ice and sonicated to 200- to 500-bp
fragments. A 20-µL aliquot of sonicated chromatin was reserved
as input, and 100 µL were immunoprecipitated with 10 µg
of anti-H3K36me3 (Abcam, #ab9050), anti-H3K27me3 (Active
Motif, #39155), or anti-H4K20me3 (Active Motif, #91107) anti-
bodies at 4°C overnight. The following day, 30 µL of protein A
magnetic beads were added, and samples were incubated for 3
h. Beads were sequentially washed once with buffer I (20 mM
Tris-HCl [pH 8.1], 50 mM NaCl, 2 mM EDTA, 1% Triton X-100,
0.1% SDS), twice with buffer II (10 mM Tris-HCl [pH 8.1], 250
mM LiCl, 1 mM EDTA, 1% NP-40, 1% sodium deoxycholate),
and twice with TE buffer (10 mM Tris-HCl [pH 7.5], 1 mM
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EDTA). DNA was eluted in 300 µL elution buffer (100 mM
NaHCO3, 1% SDS), treated with RNase A (8 µg/mL) at 65°C for
6 h, and digested with Proteinase K (345 µg/mL) overnight at
45°C. Immunoprecipitated DNAwas used to construct sequencing
libraries with theNEXTFLEXChIP-seq Library Prep kit for Illumina
(Bioo Scientific, #NOVA-5143-02) and sequenced on an Illumina
NovaSeq 6000 platform using a paired-end 150-bp (PE150) strat-
egy. Low-quality reads were filtered using Trimmomatic v0.36
(Bolger et al. 2014), and clean reads were mapped to the F. grami-
nearum reference genome using BWA v0.7.15 (Li and Durbin
2009). PCR duplicates were removed with SAMtools v1.3.1 (Li
et al. 2009). Peak callingwas performedwithMACS2 v2.1.1 (band-
width, 300 bp; model fold, 5–50; Q-value≤0.05) (Zhang et al.
2008). ChIP-seq results were validated by ChIP-qPCR using prim-
ers listed in Supplemental Table S8. Relative enrichmentwas calcu-
lated as fold enrichment (ChIP signal divided bymock signals). All
experiments were conducted with three independent biological
replicates.

Identification of cryptic transcription events

To identify genes potentially affected by cryptic transcription ini-
tiation in Δset2, a region-based intragenic coverage analysis was
performed as described previously (McCauley et al. 2021). Gene
bodies were divided into three segments: 5′ (upstream third), mid-
dle (central third), and 3′ (downstream third). Read counts for each
segment were obtained using featureCounts v2.0.1 (Liao et al.
2014) with parameters -t exon -g transcript_id -f -O -T 8 -p -C,
and normalized to TPM. For each gene, a middle-to-edge fold-
change ratio was calculated as the read density in the middle seg-
ment divided by the average of the 5′ and 3′ segments, reflecting
internal transcript accumulation indicative of cryptic initiation.
Fold-change values were calculated separately for PH-1 and Δset2.
Genes with a middle-to-edge ratio >1 in Δset2 and <1 in PH-1,
and a log2 Δset2/PH-1 >1 were considered candidates exhibiting
cryptic transcription initiation in Δset2.

Aurofusarin treatment assays in F. graminearum

To evaluate the biological effect of aurofusarin against F. graminea-
rum, PH-1 conidia were germinated in 2% sucrose at 25°C in the
dark for 5 h, after which aurofusarin was added at a final concen-
trations of 10 or 100 ppm. After 48 h, mycelia were harvested,
dried, and weighed. For conidiation assays, PH-1 was cultured in
CMC liquid medium supplemented with aurofusarin (10 or 100
ppm) at 25°C and 180 rpm in the dark for 5 days. Conidial yield
and septation were quantified microscopically. To assess germina-
tion, conidia were incubated in 2% sucrose containing 10 or 100
ppm aurofusarin for 5 h under the same conditions. Samples
were stained with calcofluor white (CFW) and examined under a
fluorescence microscope.

Statistical analysis

All statistical analyses were conducted using IBM SPSS Statistics
v27. Data are presented as mean± standard deviation (s.d.).
Differences between two groups were evaluated by a two-tailed
Student’s t-test. For multiple comparisons, one-way ANOVA fol-
lowed by Tukey’smultiple-range testwas applied. P-values and rep-
resentation factor (RF) for gene-set overlaps were calculated using
Fisher’s exact test in R (R Core Team 2025), assuming a total F. gra-
minearum genome size of 14,145 genes. Correlation analysis be-
tween the total protein number and SET domain proteins across
fungal specieswas performed using Pearson’s correlation (linear re-
gression) via the Bioinformatics online platform (https://www
.bioinformatics.com.cn; last accessed 10 Dec 2024).

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the Genome Sequence Archive at the National
Genomics Data Center (https://ngdc.cncb.ac.cn/gsa) under
BioProject ID PRJCA034518.
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