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Abstract

The mitochondrial and nuclear genomes present distinct inheritance and genomic structural characteristics.
Although both genomes have been widely used for phylogenetic tree reconstruction, topological discordances
between trees inferred from mitochondrial and nuclear genomes—referred to as mito-nuclear phylogenetic discord-
ance—have been widely reported. In this study, we analyzed the mitochondrial and nuclear genomic data from 472
insects and systematically investigated the impact of gene properties on the mito-nuclear phylogenetic tree discord-
ance. Our analyses revealed that this discordance was not attributed to most examined factors, such as gene length
and gene tree resolution, with the exception of guanine-cytosine content (GC%). We found that the mitochondrial
genes exhibited significantly lower GC% compared to the nuclear genes. Further analyses revealed that the mito-
nuclear phylogenetic discordance can be reduced by sampling mito-like nuclear genes that possess a similar GC
content to that of mitochondrial genes. Moreover, we found that within nuclear genomes, low-GC nuclear genes are
more topologically similar to each other and exhibit different biological functions than high-GC nuclear genes. These
findings enhance our understanding of the mito-nuclear phylogenetic tree discordance in insects.
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Introduction

Phylogenetic trees reconstructed from mitochondrial
and nuclear genes often exhibit incongruent topologies,
a phenomenon widely referred to as mito-nuclear phylo-
genetic discordance. Such incongruence has been exten-
sively reported across a broad range of lineages, including
vertebrates (birds, fishes, turtles, mammals), arthropods
(insects, arachnids), fungi, protozoans, and cnidarians
[1-13]. This widespread discordance hampers efforts to
reconstruct accurate evolutionary relationships and to
interpret patterns of important trait evolution.
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The structure, inheritance, and evolutionary rate of
mitochondrial and nuclear genomes differ fundamentally
[14-17]. The mitochondrial genome is haploid, mater-
nally inherited, compact, and non-recombining, whereas
the nuclear genome is diploid, biparentally inherited, and
undergoes recombination every generation. Moreover,
mitochondrial genomes typically evolve faster and con-
tain fewer genes. Although both genomes harbor valu-
able phylogenetic signals, these intrinsic differences may
result in topological conflicts between mitochondrial and
nuclear phylogenies.

Insecta, the most species-rich class of arthropods [20,
21], provides an ideal model for investigating the causes
of mito-nuclear phylogenetic discordance. As a highly
diverse group encompassing nearly all major arthro-
pod lineages, insects display remarkable variation in
genomic architecture, base composition, and evolution-
ary dynamics [22, 23]. Recently, Tao et al. reported a
large-scale dataset comprising 472 insect species from 19
orders [24], offering an opportunity to examine how gene
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heterogeneity contributes to mito-nuclear topological
discordance at a phylogenomic scale.

Previous studies have proposed various biological and
methodological explanations for mito-nuclear phyloge-
netic discordance among some insect lineages, such as
butterflies, beetles, and caddisflies [1, 12, 18, 19]. How-
ever, a broader investigation of mito-nuclear phyloge-
netic discordance across different insect orders is lacking,
and the potential influence of genomic properties—such
as the GC content, alignment length, substitutional satu-
ration, and other compositional features—has not been
systematically evaluated.

In this study, we leveraged a large-scale insect dataset
to dissect mito-nuclear phylogenetic discordance from
the perspective of genomic heterogeneity. Note that our
aim is to elucidate the cause of mito-nuclear discordance
rather than to determine which genome provides the
true or better phylogenetic tree. Specifically, we exam-
ined whether differences in nine gene properties, such
as gene alignment length and GC content, could explain
mito-nuclear phylogenetic discordance; and we explore
whether the mito-like nuclear genes could reduce the
observed phylogenetic discordance.

Results

Incongruence between mitochondrial and nuclear
phylogenies

To assess the extent of mito-nuclear phylogenetic dis-
cordance across insects, we first reconstructed two con-
catenation-based maximum likelihood (ML) phylogenies
for 472 insect species, using 1,367 single-copy nuclear
genes and 13 mitochondrial protein-coding genes (mtP-
CGs) (Fig. 1A). Overall, both the nuclear and the mito-
chondrial phylogenies presented high branch support
(Fig. 1B). Specifically, 98.30% of nodes in the nuclear
phylogeny and 88.11% in the mitochondrial phylogeny
presented bootstrap values>90%, indicating high reso-
lution in both topologies. Within the five largest insect
orders-Coleoptera, Diptera, Hemiptera, Hymenoptera,
and Lepidoptera-the proportion of highly supported
nodes (bootstrap value>90%) remained above 95% in
the nuclear trees and above 80% in the mitochondrial
trees (Fig. 1B). These results show that both inferred

(See figure on next page.)
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mitochondrial and nuclear phylogenies are generally
well- supported.

To visualize topological differences between the two
datasets, clades with identical branching orders in both
phylogenies were collapsed (Fig. 1A). Despite the high
branch support, substantial topological conflicts were
observed between the two phylogenies, suggesting that
the observed mito-nuclear phylogenetic discordance are
not artifacts of insufficient phylogenetic resolution. The
topological difference (that is, normalized Robinson—
Foulds distance) between the two trees was 0.306, indi-
cating a considerable level of topological discordance. In
addition, when topological differences were examined for
each of the five major insect orders, we found that the
degree of mito-nuclear phylogenetic discordance varied
substantially (Fig. 1C), with Lepidoptera exhibiting the
greatest incongruence (nRF distance=0.446) and Hyme-
noptera the lowest incongruence (nRF distance=0.158).
These findings suggest that the mito-nuclear phyloge-
netic discordance is widespread across insects and can-
not be explained by insufficient phylogenetic signals.

In addition, we examined whether model choice in
sequence evolution could explain the observed topo-
logical differences. To assess this, mitochondrial phy-
logenies were reconstructed from the concatenated
amino acid sequences of 13 mitochondrial genes across
472 species via a site-heterogeneous mixture model
(mtInv+F+ G4+ C60). As a result, we found that the
site-heterogeneous mixture model did not eliminate the
mito-nuclear phylogenetic discordance (Supplementary
Fig. 1), suggesting that the introduction of the complex
model also cannot explain the mito-nuclear phylogenetic
discordance detected in our dataset.

Impact of nine gene properties on the mito-nuclear
phylogenetic discordance

We investigated whether gene properties underlie the
topological differences between the mitochondrial and
nuclear phylogenies. We systematically quantified nine
gene properties, including alignment length, GC con-
tent, amino acid substitution saturation, effective number
of amino acids, proportion of constant sites, proportion
of parsimony-informative sites, external branch length,

Fig. 1 Discordance between the nuclear and mitochondrial phylogenies of 472 insects. A Comparison of the concatenated maximum likelihood
(ML) phylogenies reconstructed from 1,367 single-copy nuclear protein-coding genes (left) and 13 mitochondrial protein-coding genes (right).
Branch colors represent distinct insect orders, and numbers in parentheses represent species counts per clade. The red dashed lines indicate
conflicting associations, whereas the black lines indicate congruent associations. Nodes with ultrafast bootstrap values below 90 are shown.

B Proportions of different branch supports for all insects and five major orders in the nuclear and mitochondrial phylogenies. C Topological
discordance between the mitochondrial and nuclear phylogenies for all the insects and the five major orders. The topological discordance
between the mitochondrial and nuclear phylogenies was measured as the normalized Robinson-Foulds (nRF) distance. The numbers of species
analyzed in All, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera are 472, 38, 153, 36, 116, and 85, respectively
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average bootstrap support value, and treeness (propor-
tion of internal branch lengths over all branch lengths)
(Fig. 2A and Supplementary Table 1). Among these nine
gene properties, we found that the distribution of the
GC content of mitochondrial genes was substantially dif-
ferent from the GC content of nuclear genes, and most
mitochondrial genes presented a lower GC content than
nuclear genes did.

Next, we implemented a property-matching strategy
(Fig. 2B), in which 13 nuclear genes were selected to
match the 13 mitochondrial genes on the basis of similar-
ity in a specific gene property, and we examined whether
sampling mito-like nuclear genes would make them topo-
logically similar to the mitochondrial phylogeny. In brief,
for a given property, we sampled a set of 13 mito-like
nuclear genes whose properties are similar to those of
the 13 mitochondrial genes. We subsequently compared
the ML tree inferred from the 13 concatenated mito-
like nuclear genes with the phylogeny inferred from the
13 concatenated mitochondrial genes. We also created
a background that randomly selected 13 nuclear genes.
This property-matching strategy was conducted 20 times
for each gene property. We found that the background
presented a median nRF value of 0.334 between 13 mito-
chondrial genes and 13 random nuclear genes. Com-
pared with the background, among all nine properties,
only the GC content had the ability to reduce the phylo-
genetic discordance between 13 mitochondrial genes and
13 mito-like nuclear genes, whereas the remaining prop-
erties did not.

To further explore these findings, we compared the GC
content at the first, second, and third codon positions
(GC1, GC2, and GC3, respectively) between the mito-
chondrial and nuclear genes. We found that codons in
mitochondrial genes exhibited a remarkable bias against
codons ending in G or C, indicating a strong prefer-
ence for A/T-ending codons, whereas codons in nuclear
genes exhibited a more balanced pattern between the
first, second, and third codon positions (Supplemen-
tary Fig. 2A). Since GC content bias can directly affect

(See figure on next page.)
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amino acid composition, we next examined the amino
acid usage frequencies of the two genomes. We found
that the mitochondrial genome favored amino acids
encoded by low-GC codons (e.g., Leu, Ile, Phe, Met, Asn,
and Tyr), whereas the nuclear genome favored amino
acids encoded by high-GC codons (e.g., Ala, Arg, Glu,
and Asp) (Supplementary Fig. 2B). Taken together, these
results demonstrate that differences in GC content play
important roles in the observed mito-nuclear phyloge-
netic discordance.

Phylogenetic discordance associated with the content
of GC within nuclear genes
The above analyses focused primarily on investigating the
discordance between mitochondrial and nuclear genes.
However, the understanding of the phylogenetic discord-
ance within mitochondrial genes or nuclear genes them-
selves is limited. To do so, we first calculated pairwise
topological differences among the mitochondrial genes
and among the nuclear genes. Interestingly, we found
that mitochondrial genes presented greater topological
similarity to each other than did nuclear genes (Fig. 3A).
As mitochondrial genes generally have lower GC con-
tents than nuclear genes do, we hypothesized that low-
GC content genes present a greater level of phylogenetic
similarity to each other than do high-GC content genes.
To validate our hypothesis, we divided the mitochon-
drial genes into two groups that did not overlap in terms
of GC content (Fig. 3B). When pairwise topological dif-
ferences among each group were examined, we found
that low-GC content mito-genes were more topologi-
cally similar to each other than high-GC content mito-
genes were (Fig. 3C). Similarly, we also divided the 1,367
nuclear genes into three groups on the basis of their
GC content: the low-GC group (38-40%), the medium-
GC group (42-44%), and the high-GC group (46—48%)
(Fig. 4A, 4B). Notably, the range of the GC content in
each group was 2%, suggesting that the degree of varia-
tion in the GC content in each group was similar. Pair-
wise topological differences (that is, nRF distances) were

Fig. 2 Impact of gene properties on the discordance between mitochondrial and nuclear phylogenies. A Comparison of nine gene properties
between nuclear and mitochondrial genes, including alignment length, GC content, amino acid substitution saturation, effective number

of amino acids, proportion of constant sites, proportion of parsimony-informative sites, external branch length, average bootstrap support value,
and treeness. The green and blue colors represent mitochondrial and nuclear genes, respectively. B Workflow of the property-matching strategy
for assessing the impact of gene properties on mito-nuclear phylogenetic discordance. Color green represents 13 mitochondrial protein-coding
genes, whereas blue represents nuclear genes. The phylogeny inferred from 13 mitochondrial protein-coding genes served as the reference

tree. For a given gene property, we selected 13 mito-like nuclear genes whose values matched those of 13 mitochondrial genes (see Methods

for details). Each selection and tree reconstruction procedure was repeated 20 times. In addition, we randomly selected 13 mito-like nuclear genes
as the background. C Effect of the property-matching strategy on the basis of nine gene properties. The red dashed line indicates the median
topological discordance of the background group. Each boxplot shows the distribution of topological discordance between the mito-like

phylogenetic tree and the mitochondrial phylogenetic tree
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then calculated among gene trees within each group.
Within-group comparisons revealed a clear trend of
increasing topological differences with increasing GC
content (Fig. 4C), indicating that low-GC nuclear genes
are more topologically similar to each other.

Finally, we investigated whether differences in GC
content also reflect underlying functional differentia-
tion among nuclear genes. Gene Ontology (GO) analy-
sis, in which detailed GO terms were consolidated into
broader biological process categories, revealed clear pat-
terns across the three GC groups (Fig. 4D). The high-GC
nuclear genes represented the greatest proportion of
genes involved in several complex biological processes:
biological regulation, developmental process, response to
stimulus, multicellular organismal process, growth, and
homeostatic process. However, the low-GC nuclear genes
represented the greatest proportion of genes involved in
metabolic processes. Together, these results indicate that
the GC content not only influences the phylogenetic tree
but also reflects functional differentiation within the
nuclear genome.

Discussion
The phylogenetic trees inferred from mitochondrial and
nuclear genomes often exhibit conflicting topologies, yet
the underlying causes of this discordance remain unclear
[25-27]. In this study, we systematically investigated the
mito-nuclear discordance among 472 insect species by
quantifying nine gene properties. Our analyses revealed
that the GC content influences not only phylogenetic dis-
cordance but also underlying functional differentiation.
As the most commonly sampled markers for many
groups [28-30], mitochondrial genomes are consistently
shorter than are nuclear genomes, and differences in gene
alignment length are generally considered to contribute
to the mito-nuclear phylogenetic discordance. However,
our analyses revealed that mito-nuclear phylogenetic

discordance was not reduced when using nuclear genes
that are similar to mitochondrial genes in alignment
length, suggesting that gene alignment length does not
explain the observed conflicts. In addition, mitochondrial
genes are generally maternally inherited, leading them to
share a similar evolutionary history. However, when we
compared mitochondrial genes grouped by GC content,
substantial topological discordances were still observed
between low-GC and high-GC mitochondrial genes. In
addition to biological factors, technical issues have also
been proposed as contributors to mito—nuclear phyloge-
netic discordance. One commonly cited example is the
misapplication of sequence evolution models, especially
in cases involving strong compositional heterogeneity or
substitutional saturation [31, 32]. Because mitochondrial
genomes typically evolve faster than nuclear genomes
do, applying more complex models is often expected to
improve phylogenetic inference. However, in our study,
we found that increasing the evolutionary model com-
plexity of mitochondrial genes had a minimal impact on
reducing mito-nuclear phylogenetic discordance [33-35].
These results indicate that the gene alignment length,
inheritance pattern, and evolutionary model complexity
might not explain the observed mito-nuclear phyloge-
netic discordance.

After examining nine gene properties, we identified the
GC content as the gene property most strongly associ-
ated with the mito-nuclear phylogenetic discordance.
In addition, within mitochondrial genomes or nuclear
genomes, genes with lower GC contents produced more
topologically consistent trees than those with higher
GC contents. One plausible explanation is that GC-rich
genomic regions experience higher recombination rates
driven by GC-biased gene conversion, which might lead
to greater topological discordance [36—38]. Additionally,
the GC content is known to be correlated with the gene
expression and biological function of genes [22, 39-41].
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Consistent with these observations, we found that low-
GC nuclear genes exhibit different biological functions
compared with high-GC nuclear genes.

Our results bridge molecular composition and evolution-
ary inference, suggesting that nucleotide compositional
heterogeneity, particularly GC content, can influence not
only phylogenetic reconstruction but also function. Never-
theless, several limitations should be acknowledged. Multi-
ple biological and analytical processes have been proposed
to explain nuclear phylogenomic incongruence, including

incomplete lineage sorting, introgression, hybridization,
sex-biased dispersal, and horizontal gene transfer [26, 27,
35, 42—48]. Future research integrating those factors will
be essential to test whether they contribute to the mito-
nuclear phylogenetic discordance.

Materials and methods

Data acquisition

We utilized the mitochondrial and nuclear genome data
of 472 insects from a recent study [24], which included



Mi et al. Crop Health (2025) 3:23

13 protein-coding mitochondrial genes (PCGs) and 1,367
single-copy nuclear genes.

Phylogenetic tree construction

To infer genome-scale phylogenetic relationships among
472 insects, we introduced 15 outgroup species from
Entognatha. We used two datasets to infer the phyloge-
netic tree: (1) amino acid sequences of 13 mitochondrial
protein-coding genes and (2) amino acid sequences of
1,367 nuclear genes. For each gene, the sequences were
aligned via the program MAFFT version 7.299b [49]
with the options ‘—auto—maxiterate 1000, and the align-
ment was trimmed via trimAl version 1.4.revl5 [50] with
the options ‘-gappyout-colnumbering’ For each dataset,
trimmed alignments were concatenated into a super-
matrix via PhyKit [51]. Concatenation-based maximum
likelihood (ML) trees were constructed via IQ-TREE
multicore version 2.1.4 [52] with 1,000 ultrafast boot-
strap replicates to assess branch support. We used the
best-fitting model LG+ G4 to infer the phylogenetic
tree from the nuclear dataset and the best-fitting model
mtlnv+F+ G4 for the mitochondrial dataset. Phyloge-
netic trees were visualized via iTOL version 7.2 [53].

In addition to the concatenation-based trees, we also
constructed individual gene trees for each dataset. For
the mitochondrial genome, individual maximum-likeli-
hood (ML) gene trees were inferred via IQ-TREE (mul-
ticore version 2.1.4) with “iqtree —runs 10 -st AA -s
[alignment_file] -m mtlnv+F+ G4 -bb 1000 -pre [tree_
name]”. For the nuclear genome, individual ML gene trees
were inferred via “iqtree —runs 10 -st AA -msub nuclear
-s [alignment_file] -m TEST -bb 1000 -pre [tree_name]”.

To further assess the influence of alternative sequence
evolution models on the mitochondrial phylogenetic
tree, we used an additional site-heterogeneous model,
C60, with the option ‘-m mtInv + F+ G4+ C60.

Phylogenetic tree comparison

Topological discordance between phylogenetic trees was
measured by the normalized Robinson-Foulds (nRF)
distance [54]. The nRF distance ranges from 0 to 1,
where lower values denote greater topological similarity
between trees. We calculated the nRF distance with the
ETE3 package version 3.1.3 [55].

Gene properties

We evaluated nine genomic properties for both the
nuclear and the mitochondrial genomes. For each gene
alignment, we calculated the following: (a) Alignment
length: the total number of amino acid sites. (b) GC con-
tent: percentage of guanine and cytosine nucleotides. (c)
Amino acid substitution saturation estimated via PhyKit
[51] measures the extent of substitutions in a multiple
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sequence alignment, ranging from 0 (highly saturated)
to 1 (minimally saturated). (d) The effective number of
amino acids: a metric of per-site compositional diver-
sity, as defined by Széntho [56], ranging from 1.0 (a single
amino acid exclusively used) to 20.0 (all amino acids uni-
formly distributed). (e) Proportion of constant sites and
(f) Proportion of parsimony-informative sites extracted
from the IQ-TREE log files. (g) External branch length:
the median external branch length in an ML gene tree.
(h) Average bootstrap support value: the mean bootstrap
support value across all nodes. (i) Treeness: ratio of inter-
nal branch length to total branch length, defined by Phil-
lips and Penny [57]. These metrics provide insights into
the overall tree shape, support, and proportion of phylo-
genetic signals distributed within internal branches.

Property-matching strategy for selecting
mitochondrial-like nuclear genes

To investigate the role of nine gene properties in the
mito-nuclear phylogenetic discordance, we implemented
a property-matching strategy that identifies mito-like
nuclear genes and evaluates their phylogenetic similarity
to mitochondrial trees (Fig. 2B). A reference mitochondrial
phylogeny was inferred from a concatenated supermatrix
of amino acid alignments comprising 13 protein-coding
mitochondrial genes. The tree was inferred via IQ-TREE
v2.2.0 via mtlnv+F+G4 with 1,000 ultrafast bootstrap
replicates to assess the node support value. For each gene
property, 13 nuclear genes whose values matched those of
the 13 mitochondrial genes were chosen. For example, in
the alignment length test, a nuclear gene was considered
similar to a mitochondrial gene if its alignment length
differed by less than+5% from that of the mitochondrial
gene. These 13 mito-like nuclear genes were concatenated
into a supermatrix and used to construct a phylogenetic
tree with IQ-TREE v2.2.0. This sampling and tree-building
procedure was repeated 20 times. The other test groups
were subjected to the same procedures.

Functional annotation analysis

For genes in the low-, medium-, and high-GC groups, we
collected the Gene Ontology (GO) terms for each gene
and compiled them into 18 Biological Process (BP) cat-
egories via the Python package goatools [58].

Supplementary Information

The online version contains supplementary material available at https://doi.
org/10.1007/s44297-025-00062-3.

Supplementary Material 1. Figure S1 Nuclear and mitochondrial phylog-
enies inferred under different evolutionary models. The nuclear phylogeny
(top) was inferred via the LG+G4 model, whereas the mitochondrial phy-
logenies (bottom left and right) were reconstructed via the mtinv+F+G4
and mtinv+F+G4+4C60 models, respectively. Topological discordances
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(nNRF) between each pair of trees are shown along the connecting lines.
Branch colors correspond to different insect orders, similar to those in
Fig. TA. Figure S2 Nucleotide preferences at different codon positions
correlate with amino acid usage in nuclear and mitochondrial genes. (A)
Distribution of the GC content at the first (GC1), second (GC2), and third
(GC3) codon positions for the mitochondrial (green) and nuclear (blue)
genes. (B) Proportion of twenty standard amino acids in the mitochon-
drial (green) and nuclear (blue) genes. Note that the difference between
nuclear and mitochondrial codon codes was considered.

Supplementary Material 2. Table S1 Detailed data on nine gene properties
of each mitochondrial and nuclear gene.
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