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A critical evaluation of deep-learning based phylogenetic inference

programs using simulated datasets
Inferring phylogenetic trees from molecular sequences is a

cornerstone of evolutionary biology. Many standard phylogenetic

methods (such as maximum-likelihood [ML]) rely on explicit models

of sequence evolution and thus often suffer frommodel misspecifica-

tion or inadequacy. The on-rising deep learning (DL) techniques offer

a powerful alternative. Deep learning employs multi-layered artificial

neural networks to progressively transform input data into more ab-

stract and complex representations. DL methods can autonomously

uncover meaningful patterns from data, thereby bypassing potential

biases introduced by predefined features (Franklin, 2005; Murphy,

2012). Recent efforts have aimed to apply deep neural networks

(DNNs) to phylogenetics, with a growing number of applications in

tree reconstruction (Suvorov et al., 2020; Zou et al., 2020;

Nesterenko et al., 2022; Smith and Hahn, 2023; Wang et al., 2023),

substitution model selection (Abadi et al., 2020; Burgstaller-

Muehlbacher et al., 2023), and diversification rate inference

(Voznica et al., 2022; Lajaaiti et al., 2023; Lambert et al., 2023).

In phylogenetic tree reconstruction, PhyDL (Zou et al., 2020) and

Tree_learning (Suvorov et al., 2020) are two notable DNN-based pro-

grams designed to infer unrooted quartet trees directly from align-

ments of four amino acid (AA) and DNA sequences, respectively.

These two DNN programs offer pre-built models for immediate anal-

ysis and the flexibility to train new models on user-defined datasets,

with benchmark tests showing performance comparable to or

exceeding traditional phylogenetic methods. However, DNNs

encounter challenges as well. It is well known that the effectiveness

of a machine-learning algorithm heavily depends on the input-data

representation (Alzubaidi et al., 2021). Both PhyDL and Tree_learning

are supervised learning methods that need to be trained; however, in

molecular phylogenetics, simulation under explicit models of

sequence evolution is the only realistic source of training data. There-

fore, while DNNs can outperform traditional phylogenetic methods

on benchmarks primarily consisting of simulated data

(Leuchtenberger et al., 2020), their performance might be compro-

mised on biological data, highlighting the need to understand the

robustness of DL-based phylogenetic methods when applied to

out-of-distribution data. A recent study suggests that DNNs struggle

to match existing methods on data sets with branch-length and

sequence-length settings that differ significantly from those in the

DNN training data (Zaharias et al., 2022). In this study, we critically

evaluated PhyDL and Tree_learning using simulated data, high-

lighting critical constraints in current deep learning applications in

molecular phylogenetics and proposing suggestions to reduce the

risk of inaccurate inferences in practical use.

To investigate the strengths and weaknesses of PhyDL and

Tree_learning, we first designed a test to evaluate the performance
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of pre-built models provided by PhyDL and Tree_learning, which

are likely to be used out-of-the-box by the community (Fig. 1A).

Here, the test datasets were simulated under conditions deliberately

selected to avoid those well covered in the data used to train existing

PhyDL and Tree_learning models.

PhyDL comes with three sets of pre-built DNN models, namely

DNN1, DNN2, and DNN3, differing in the simulation settings (e.g.,

heterogeneity level and branch length distribution) of their training

data. All these DNNmodels were trained with the long-branch attrac-

tion (LBA) conditiondalso known as the Felsenstein zonedconsid-

ered, but relatively few long-branch repulsion (LBR) treesdthose in

the Farris zonedwere included in their training data (Table S1). These

DNN models showed comparable or superior performance to ML

methods and other traditional phylogenetic methods when tested

on data simulated from LBA-susceptible trees (Zou et al., 2020).

We first followed the LBA benchmark design from Zou et al. (2020)

to evaluate the DNN models on datasets simulated under LBA/LBR

conditions (Figs. S1eS5; Text S1). To further examine the perfor-

mance of DNN models, we used data sets containing AA alignments

simulated with progressively complex models (LGþFþG,
LGþC20þFþG, and LGþC60þFþG) (Wang et al., 2018) based on

LBA and LBR trees (Fig. 1B). We also analyzed these datasets using

the ML phylogenetic program IQ-TREE for comparison. For data

simulated under LBA condition, none of the three PhyDL models

had an accuracy above 50%, while all ML phylogenetic models per-

formed substantially better than DNN models (Figs. 1C and S6). On

LBR datasets, the accuracies were 100% for DNN1 and DNN2 but

nearly 0% for DNN3, whereas the accuracies of ML models ranged

from 65.00% to 99.97%. Additionally, we investigated an unex-

pected performance of DNN3 regarding tree type, noting a high fre-

quency of “incorrect tree e other” on LBA data and “incorrect treee

LBR-I” on LBR data (Figs. 1B, 1C, S7; Text S2). Furthermore, our

investigation of the performance of DNN models during their training

processes revealed that DNN3 is more vulnerable to model fluctua-

tions during training compared with DNN1 and DNN2 (Fig. S8; Text

S3). Overall, our results suggest that the DNN models provided by

PhyDL are less accurate than ML phylogenetic models on LBA data.

We then employed the approach developed by Trost et al., (2024)

to quantify the disparity between our test data and the pre-built DNN

training data. In brief, a Gradient Boosted Trees (GBT) classifier was

trained on one dataset (e.g., the DNN1 training data) and then applied

on another (e.g., our LGþFþG LBA test data) to calculate a balanced

accuracy (BACC) (Brodersen et al., 2010) value (0e1.0, higher values

indicate greater differences) which reflects the difference between

the two datasets (Materials and methods in Supplementary Text).

As a result, the GBT analyses accurately distinguished each of our
ademy of Sciences, and Genetics Society of China. Published by Elsevier Limited and
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Fig. 1. Evaluation of deep learning-based phylogenetic inference programs on simulated datasets. A: Schematics of performance evaluations for pre-built models conducted in this

study. B: Illustrations of the three possible inference outcomes for a four-sequence AA alignment under LBA or LBR conditions, as inferred by IQ-TREE and PhyDL models. C: Pro-

portions of different types of trees inferred by IQ-TREE and PhyDL models from test datasets simulated under LBA or LBR conditions. D: Schematics of the procedures for simulating the

four distinct DNA test datasets used for tree inference with various IQ-TREE and Tree_learning models. E: Proportions of correctly inferred trees for various IQ-TREE and Tree_learning

models on four simulated test datasets. F: Schematics of the performance evaluations for custom-trained models conducted in this study. G: Performance of optimized PhyDL models

on simulated protein sequence alignments across various branch length combinations. H: Performance of new Tree_learning models optimized for the presence of random gaps on

simulated DNA sequence alignments. I: Schematics of a potential solution to mitigate risks arising from differences between training and testing data. DL, deep-learning; ML, maximum-

likelihood; LBA, long-branch attraction; LBR, long-branch repulsion; DNN, deep neural network; CNN, convolutional neural network.
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test datasets from the training data of pre-built DNN models (with

BACC values above 0.99), indicating substantial differences between

our test data and the original training data (Table S2; Fig. S9).

In Suvorov et al. (2020), the convolutional neural network (CNN)

model trained on gapped data performedmuch better than traditional
715
phylogenetic methods on gapped alignments, likely because it can

extract additional phylogenetic signals from gaps. Specifically, gaps

in the training and test data were all simulated by INDELible, and

the phylogenetic signals carried by these indel gaps are expected to

match the underlying phylogenies. However, real data often contain
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random gaps (e.g., due to incomplete genome assemblies, partial

gene models, or errors in multiple sequence alignments) that may

add noise to phylogenetic analyses. To investigate whether the inclu-

sion of random gaps might impact the performance of pre-built CNN

models, we first simulated an ungapped dataset (NOGAP.ori) and a

gapped dataset (INDEL.ori), following the procedures of Suvorov

et al., (2020) and then created two additional datasets, NOGAP.extra-

gaps and INDEL.extragaps, by introducing random gaps into the first

two datasets, respectively (Fig. 1D). We applied the CNN model

trained on ungapped data (referred to as “CNN.NOGAP.Ori”) on

NOGAP.ori, and the model trained on gapped data (referred to as

“CNN.INDEL.Ori”) on the three datasets with gaps. For comparison,

we analyzed the data using IQ-TREE under two modes, including

“IQ-TREE.Standard”, where gaps are treated as missing data with

no information, and “IQ-TREE.Recoded”, where gaps are recognized

as the fifth character in addition to A, T, C, andG.Our evaluation of IQ-

TREE and Tree-learning models on NOGAP.ori yielded similar results

to those reported by Suvorov et al. (Fig. S10; Text S4). On INDEL.ori,

which includes only indel gaps, both CNN.INDEL.Ori and IQ-

TREE.Recoded achieved much higher accuracy compared with their

performance on NOGAP.ori, whereas the accuracy of IQ-

TREE.Standard remained unchanged. However, after random gaps

were introduced into the test data, CNN.INDEL.Ori became substan-

tially less accurate on NOGAP.extragaps and INDEL.extragaps, while

the two IQ-TREE models had nearly the same accuracies (Fig. 1E).

Additionally, we also tested CNN.NOGAP.Ori, CNN.INDEL.Ori, and

IQ-TREE models across various branch-length combinations

(Fig. S11; Text S5). Our results indicated that the inclusion of random

noisy gaps in our test data impaired the performance of existing

Tree_learning models, rendering them less accurate than IQ-TREE.

CNN models trained on indel gaps likely misinterpreted random

gaps as informative characters, extracting misleading signals as a

result.

In addition to offering pre-built models, both PhyDL and

Tree_learning allow users to train new models using custom data.

Therefore, we tested if the performance of PhyDL and Tree_learning

on difficult datasets could be improved by targeted training using

data simulated under the same challenging conditions, either inde-

pendently or in conjunction with the original training data (Fig. 1F).

Importantly, we examined the performance of the new models under

both target and non-target conditions to better understand the

outcome of this model optimization strategy.

We first examined whether targeted training could produce

PhyDL models with improved accuracy under LBA/LBR conditions.

We simulated additional LBA and LBR datasets under

LGþC20þFþG. These datasets were used to train new DNNmodels,

including DNN_LBA10K (trained on 10,000 LBA alignments),

DNN_LBR10K (trained on 10,000 LBR alignments), and DNN_60K

(training on 30,000 LBA and 30,000 LBR alignments). Additionally,

we trained DNN_160K using the DNN_60K data along with 100,000

alignments simulated similarly to the original DNN3 training data.

These new DNN models were applied to the same test data in our

first test (Figs. 1G and S12). DNN_LBA10K demonstrated signifi-

cantly improved performance on LBA data (accuracy exceeding

95%) but showed notable bias when applied to LBR data (Figs. 1G

and S12). A similar trend was observed with DNN_LBR10K, which

made accurate inferences under LBR conditions, but its accuracy

dropped on LBA data. We also found that adding more simulated

alignments from a denser sampling of branch length combinations

did not improve the performance of DNN_LBA10K and

DNN_LBR10K (Fig. S13). DNN_60K and DNN_160K demonstrated

a more balanced performance across LBA and LBR conditions, per-

forming between DNN_LBA10K and DNN_LBR10K on both types of

test data (Figs. 1G and S12). Notably, DNN_160K performed sub-

stantially better than DNN3 on our test data, and its accuracy on
716
the original DNN3 test data (“testing3_mixed”) was still close to

that of DNN3 itself (Table S3). Unlike DNN3, errors made by all new

DNN models were mostly of the expected “incorrect treeeLBA” on

LBA datasets, and distributed more evenly between two types of

incorrect trees on LBR datasets (Fig. 1G).

For Tree_learning, we trained two new CNNmodels, CNN.NOGA-

P.Extragaps and CNN.INDEL.Extragaps, on datasets simulated un-

der the NOGAP.extragaps and INDEL.extragaps schemes,

respectively, and tested their performance on NOGAP and INDEL

datasets with or without random gaps (Fig. 1H). Generally, the

best-performing model for each dataset was the one whose training

data were simulated in the same way as the test data. CNN.INDE-

L.Extragaps had considerably higher accuracy than CNN.INDEL.Ori

on both NOGAP.extragaps (63.43% vs. 38.57%) and INDEL.extra-

gaps (84.54% vs. 70.16%) (Fig. 1H; Text S6). We further enhanced

the performance of CNN.INDEL.Ori on random gaps by conducting

additional training with alignments simulated under the INDEL.extra-

gaps scheme. The fine-tuned model (CNN.Fine-tuned) demonstrated

significantly higher accuracy than the original CNN.INDEL.Ori model

on NOGAP.extragaps (68.65% vs. 38.57%) and INDEL.extragaps

(84.83% vs. 70.16%), while maintaining nearly identical performance

to CNN.INDEL.Ori on the ungapped dataset NOGAP.ori (69.42% vs.

69.51%) and exhibiting slightly reduced accuracy on INDEL.ori

(85.89% vs. 88.17%) (Fig. 1H). Additionally, we tested whether the

targeted training could produce Tree-learning models with better

performance under LBA/LBR conditions (Table S4; Text S7). Our re-

sults indicate that our targeted optimization effort has successfully

enhanced the model’s capability to handle random gaps, albeit

with a slight compromise on its performance on phylogenetically

informative indels.

In conclusion, our critical evaluation of PhyDL and Tree_learning

provides practical evidence that MLmethods generally outperformed

DNN programs, especially when data properties were unfamiliar to

the pre-built DNNmodels. While DNN performance can be enhanced

by training new models tailored to these specific conditions, this

comes at the cost of reduced generalizability. Additionally, several

challenges must be addressed before DL-based phylogenetic

methods can compete with traditional approaches: first, existing

DLmethods like PhyDL and Tree_learning can only infer quartet trees

instead of full phylogenies (in cases of more than four sequences);

second, DL methods need to demonstrate their ability to learn pat-

terns from empirical MSAs; third, few DL methods can successfully

infer branch lengths (Text S8).

Based on our results, we recommend assessing the differences

between training and test data prior to conducting tree inference to

avoid potential pitfalls in phylogenetic reconstruction with DNN pro-

grams (Fig. 1I). Our examination of the differences between the pre-

built DNN training data and our test data using the GBT classifier may

serve as an example (Table S2). Overall, our evaluation provides valu-

able insights for the future development of DNN-based phylogenetic

methods and offers practical guidance for their application.
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